
Xilinx FPGA 的 power-up 配置和 start-up 过程

FPGA 的配置分为 3 步,

- 1. 清除配置 SRAM
- 2. 下载配置数据
- 3. Start-up 过程激活逻辑

igure 14: Serial Configuration Flowchart

Power-up 配置

从上图可见,配置在 FPGA 上电时自动进行。上电后,FPGA 自动开始清楚 RAM 的内容(此时,外围电路应使/program=1),清除 RAM 后,FPGA 使/INIT 变为无效,开始装载配置 bit(如果保持/INIT 信号有效,则可以延迟装载 bit,INIT 是双向端口)。装载 bit 的过程中,FPGA 会做 CRC 检查,发现错误则把/INIT 信号拉低。配置完成后 done 变高。配置时序如下图所示。

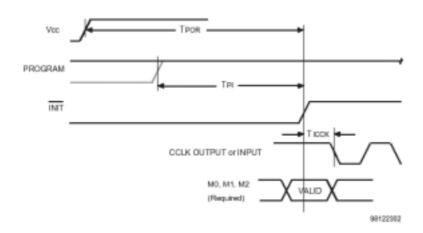


Figure 19: Power-up Timing Configuration Signals

也可以通过把/program 置低开始(在不重新上电的情况下开始配置 FPGA)

对 Xilinx FPGA 的配置有四个主要步骤(不重新上电的情况下开始配置 FPGA):

(1) 配置存储器清空(Clearing Configuration Memory)

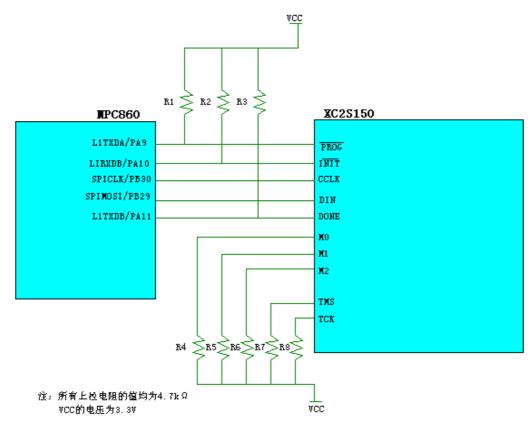
将 PROGRAM 管脚拉低 300ns 以上。当 PROGRAM 拉低后,开始配置存储器,将存储器清空。此时 INIT 将被拉低,当 PROGRAM 置高后,FPGA 将继续将 INIT 置低直到完全清除完所有的配置存储器。当 INIT 变高时,配置便可以开始了。

(2) 加载配置数据 (Loading Configuration Data)

当 INIT 变高时,便可以配置 FPGA 了。配置时,先将 CCLK 置低,再将数据发送到 DIN上,延时 45ns 以上,再将 CCLK 置高,该位数据便写入到了 FPGA 中(数据是低位在前),然后再准备下一次的输入。如此反复,将所有数据输入完毕为止。

(3) CRC 错误校验 (CRC Error Checking)

在加载数据过程中,嵌入到配置文件中的 CRC 值同 FPGA 计算出来的值比较,若有 CRC 校验错误产生,则 INIT 置低,且 FPGA 停止加载。


Start-up 过程

默认的 start-up 过程在 DONE 信号变高并延迟一个 CCLK 后进行,此时 global tri-state signal(GTS)信号释放,这样允许器件 output 打开。

一个 CCLK 后, Global Set/Reset (GSR)和 Global Write Enable (GWE)信号释放,这

样允许内部储存元件开始随着逻辑和用户时钟做出反应。

用 CPU 配置 FPGA

• ♥ 图 1 MPC860与 XC2S150的 Slave Serial模式的连接示意图+

4.2.7 采用 Slave Serial 模式对单个 FPGA 进行配置

在 Slave Serial 模式中,需要将"MO、M1、M2"设置为"111"。

对 Xilinx FPGA 的配置有四个主要步骤:

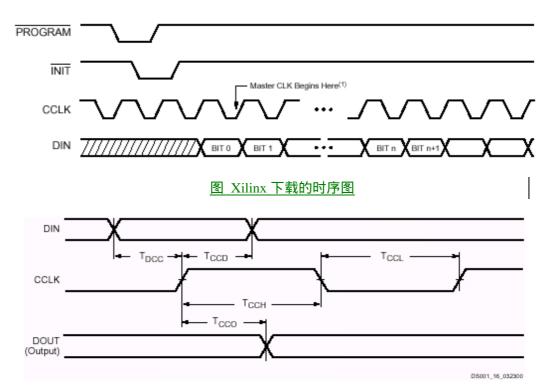
(4) 配置存储器清空(Clearing Configuration Memory)

将 PROGRAM 管脚拉低 300ns 以上。当 PROGRAM 拉低后,开始配置存储器,将存储器清空。此时 INIT 将被拉低,当 PROGRAM 置高后,FPGA 将继续将 INIT 置低直到完全清除完所有的配置存储器。当 INIT 变高时,配置便可以开始了。

(5) 加载配置数据 (Loading Configuration Data)

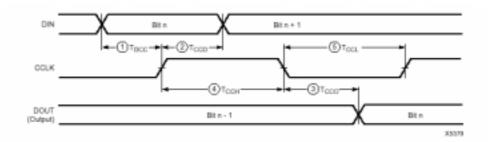
当 INIT 变高时,便可以配置 FPGA 了。配置时,先将 CCLK 置低,再将数据发送到 DIN上,延时 45ns 以上,再将 CCLK 置高,该位数据便写入到了 FPGA 中(数据是

低位在前),然后再准备下一次的输入。如此反复,将所有数据输入完毕为止。


(6) CRC 错误校验 (CRC Error Checking)

在加载数据过程中,嵌入到配置文件中的 CRC 值同 FPGA 计算出来的值比较,若有 CRC 校验错误产生,则 INIT 置低,且 FPGA 停止加载。

(7) FPGA 开始运行(Start-up)


数据加载完毕后,继续送出 CCLK 时钟,等待 DONE 置高。当 DONE 置高后,FPGA将进入 Start-up 状态,即 FPGA 从配置状态转入到运行状态。

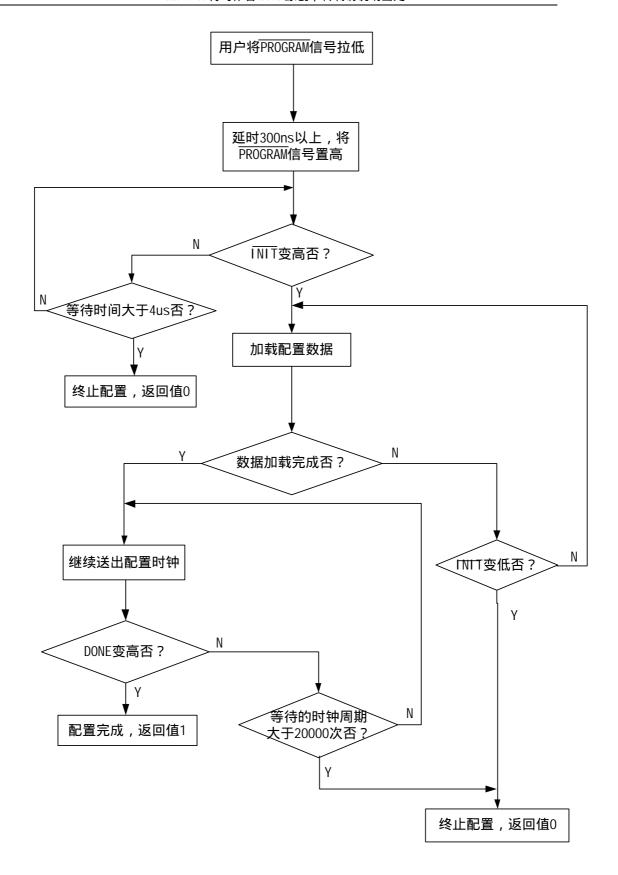
Xilinx FPGA 的下载时序图如图所示。

Symbol		Description		Units	
T _{DCC}	- CCLK -	DIN setup	5	ns, min	
T _{CCD}		DIN hold	0	ns, min	
T _{CCO}		DOUT	12	ns, max	
T _{CCH}		High time	5	ns, min	
T _{CCL}		Low time	5	ns, min	
F _{CC}		Maximum frequency	66	MHz, max	

图 Virtex、Virtex –e 和 Spartan Slave Serial 模式的时间关系图

	Description		Symbol	Min	Max	Units
CCLK	DIN setup	1	TDCC	20		ns
	DIN hold	2	T _{CCD}	0		ns
	DIN to DOUT	3	Tooo		30	ns
	High time	4	Tooh	45		ns
	Low time	5	T _{CCL}	45		ns
	Frequency		Foc		10	MHz

Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.


图 SpartanXL Slave Serial 模式的时间关系图

其操作过程如下所述:

CPU 按下列步骤操作 I/O 口线,即可完成对 FPGA 的配置:

- 1.设置 PROGRAM = '0', 保持 300ns 以上, 然后再设置 PROGRAM = '1'。
- 3.置 CCLK= "0", DIN 上放置数据(低位在前), 延时(45ns以上)。
- 4. CCLK="1"(将数据写入 FPGA 中), 并延时 45ns 以上, 并检测 INIT 是否变低, 若 INIT = '0', FPGA 需要重新配置。
- 5.准备下一位数据,并重复执行步骤3、4,直到所有数据送出为止。
- 6.继续送出时钟信号,并等待 DONE 置高。当 DONE 置高后,表明 FPGA 的配置已完成。若在一定时钟周期内 DONE 不能置高(需要等待的最大时钟周期在 DataSheet中没有介绍,Xilinx 的技术人员说是配置成功一般需要十几个时钟周期 DONE 信号便会抬高,在例程和流程图中,我们采用了等待 20000 个时钟周期,此时 DONE 还不置高,表示配置异常。),必须重新配置(从步骤 1 开始)。

其配置流程图如下图所示:

