PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

F—F PS2 Bir. BEIMN

Introduction:

EIE=E

The PS/2 device interface, used by many modern mice and keyboards, was developed by IBM and originally
appeared in the IBM Technical Reference Manual. However, this document has not been printed for many
years and as far as I know, there is currently no official publication of this information. I have not had access
to the IBM Technical Reference Manual, so all information on this page comes from my own experiences as
well as help from the references listed at the bottom of this page.

PS/2 B4 LU TR 2 BRI SR AR, e i1 IBM TR O Hase Wl HELAE IBM HoR S FH . (1
Ty PRI A IR IR ST QAR 2B BN T, AR T3S W BIE A B 7 (AR .
Joik Vi) IBM IR ZE T, BrLUAR SR (T (5 Bk B T3 8 CZ50 A 5 1T 41 H i)
S .

G XIS e IS At O

This document descibes the interface used by the PS/2 mouse, PS/2 keyboard, and AT keyboard. T'll cover
the physical and electrical interface, as well as the protocol. If you need higher-level information, such as
commands, data packet formats, or other information specific to the keyboard or mouse, I have written
separate documents for the two devices:

AN SR TR T PS/2 bR PS/2 B & AT BERLINHE Lo FRKAE A BRI i B LT AR L
BRR AR S S A5 R 2 . Bodls G A% S sl JLAb o T4 Um0 0 401, IS4 Fonf X
FPBES T AT (1 3P

The PS/2 (AT) Keyboard Interface
The PS/2 Mouse Interface

GEHE: EXRCE AU RIXEFECPRT, 2% SN =)

I also encourage you to check out my homepage for more information related to this topic, including projects,
code, and links related to the mouse and keyboard.

Fe AV Bl AR AE F 10 3 0B 5 2 X AN AT G (R 6 04 TR AR AN 5 ERUPR B A A SR (K B2

The Connector:

B

The physical PS/2 port is one of two styles of connectors: The 5-pin DIN or the 6-pin mini-DIN. Both
connectors are completely (electrically) similar; the only practical difference between the two is the
arrangement of pins. This means the two types of connectors can easily be changed with simple hard-wired
adaptors. These cost about $6 each or you can make your own by matching the pins on any two connectors.
The DIN standard was created by the German Standardization Organization (Deutsches Institut fuer Norm) .
Their website is at http://www.din.de/ (this site is in German, but most of their pages are also available in
English.)

Yy L) PS/2 B & PIRHERAS 1 1M 5 K DIN 20 6) mini-DIN, IXPERRER (75 Uk
P LD SR A, S2Br LI A — AN RS2 I HE S o IR AT X P I R s T LUR
Sy i B AR RE A 2 1) I TG A R e A o XM IE G A8 KA BEAME 6 2670, B0 IR AT LIRSS AT S P R
PR [P0 N 0GR AR B TP L #S « DIN Frife fh 8 E AR AL 41 23 (Deutsches Institut fuer Norm) g
SEHY . AT RS LE http:/www.din.de/ GXANu RS, BABATHIAR 22 W IR AT 3930 .

1o 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

PC keyboards can have either a 6-pin mini-DIN or a 5-pin DIN connector. If your keyboard has a 6-pin
mini-DIN and your computer has a 5-pin DIN (or visa versa), the two can be made compatible with the
adaptors described above. Keyboards with the 6-pin mini-DIN are often referred to as "PS/2" keyboards,
while those with the 5-pin DIN are called "AT" devices ("XT" keyboards also used the 5-pin DIN, but they are
quite old and haven't been made for many years.) All modern keyboards built for the PC are either PS/2, AT,
or USB. This document does not apply to USB devices, which use a completely different interface.

PC B AT LA 6 A1 mini-DIN 20 5 JAIf¥) DIN #4eds . W RARFISERL 2 6 A mini-DIN AR i) v 5L
s 5 B DIN (B A B, X RIERL a8] U] B g2 2 i il ek He A . A 6 I mini-DIN 54
TH A “PS/2” BEAL, TBLEAT 5 A DIN AYfig “AT” B (“XT” BRI 5 | DIN, (HEA]
e o E I A2 ERAA T FraBARINA PC 2 1B AN /2 PS/2,AT it A& USB). X5
ANEH] T USB Be#e, EAMEM T —Fhoe AR AR .

Mice come in a number of shapes and sizes (and interfaces.) The most popular type is probably the PS/2
mouse, with USB mice gaining popularity. Serial mice are also quite popular, but the computer industry is
abandoning them in support of USB and PS/2 devices. This document applies only to PS/2 mice. If you
want to interface a serial mouse, check out Microchip's appnote #519, "Implementing a Simple Serial Mouse
Controller."

BUPRIRAT A KB RZIRR N CRIEZED, SiRAT IR A AT eS8 PS/2 Blbs, BUAE USB SUARMTH T 46
AT T o AT RARFEREAER AT, EIFEHL TR T e 111 S H USB Fl PS/2 ¥4 . X5 i
BOEM T PS/2 Blbr. WERARESNTE — > sh AT BUARAIEL 1, 1 A5 Microchip 1) 519 5 M H] “SE3l—A
fi] L () R AT BUBR 2 T 8 7

As a side note, there is one other type of connector you may run into on keyboards. While most keyboard
cables are hard-wired to the keyboard, there are some whose cable is not permanently attached and come as a
separate component. These cables have a DIN connector on one end (the end that connects to the computer)
and a SDL (Sheilded Data Link) connector on the keyboard end. SDL was created by a company called
"AMP." This connector is somewhat similar to a telephone connector in that it has wires and springs rather
than pins, and a clip holds it in place. If you need more information on this connector, you might be able to

find it on AMP's website at http://www.connect.amp.com/. I have only seen this type of connector on (old)
XT keyboards, although there may be AT keyboards that also use the SDL. Don't confuse the SDL connector
with the USB connector--they probably both look similar in my diagram below, but they are actually very
different. Keep in mind that the SDL connector has springs and moving parts, while the USB connector does
not.

VERILVE, IAT 3 A — PR (R IR AR IR PT LAE B L2 o B 22 50 A5 v B 0t] I R B R A 1
(EEAT — Lo L AR R AR, oA AN B AT . R A > DIN [RIER
ar OX iR THENL MR BRI — o/ — A SDL (BRI EHEIE RS) iS4, SDL 2
/NI AMP (8 FENLH . IR SR TSRS, R SR MBI, AR T
TRAFEAEE IR E Lo I RARTR BRGSO T IXMIE AR M 25 5, JR7T LAE AMP [i R3] E,
AMP (¥R {E http:/www.connect.amp.com/. 4 AT g AT BEAL [AIAE T LU H] SDL, HIHAE—MRE
(K] XT A DR Wl X Al . A2 SDL EH 4 USB AR IR, XA AT BEAETR T i
o B R REREL, ER e AT bR L2 AR AR dfE SDL A #3RIE S #AF, 1 USB i
s

The pinouts for each connector are shown below:
BEMERE R 1 5 IAE b s

F2ud 2 02-11-24 KA

PS2 RS #%: Adam Chapweske i¥: Roy Show
Male A1 Female B} 5-pin DIN (AT/XT): 5 Jiifl DIN(AT/XT)

1 - Clock 1— N

2 - Data 2— 3

3 - Not Implemented 3—RSEHL, R

4 - Ground 4— Y5 Hh
(Plug) ¥k (Socket) 4 J& 5-+45v 5—HLJE+SV

Male A1) Female £} 6-pin Mini-DIN (PS/2): | 6 [l Mini-DIN(PS/2)
1 - Data 1 — % #s
2 - Not Implemented 2— RS, fRE
3 - Ground 3—HL AL
4-+5v 4—HJE+5V
(Plug) i3k (Socket) #i)sE 5 - Clock 5—In4h

6 - Not Implemented

6— ARSEIL, fRE

6-pin SDL: 6 4 SDL
— m A - Not Implemented A— R, fRE
ABCDEF FEDCEA B - Data B_ﬁ%}%
C - Ground C— i
D - Clock D — i g
E-+5v E— ifiii+5V

F - Not Implemented

General Description:

— R -

(Note: Throughout this document, I may use the more general term "host" to refer to the computer--or
whatever the keyboard/mouse is connected to-- and the term "device" will refer to the keyboard/mouse.)

G R IR S0, AT 7 305 MARTE “host™” ff 2 VHEMLEGE SR/ BUARE R B T, AR
i “device” JEFRHAL/ AR

(P E N3 host W] BERERHEE K ML)

There are four interesting pins on the connectors just described: Ground, +5v, Data, and Clock. The +5Vis
supplied by the host (computer) and the keyboard/mouse's ground is connected to the host's electrical ground.
Data and Clock are both open collector, which means they are normally held at a high logic level but can easily
be pulled down to ground (logic 0.) Any device you connect to a PS/2 mouse, keyboard, or host should have
large pull-up resistors on the Clock and Data lines. You apply a "0" by pulling the line low and you apply a
"1" by letting the line float high. Refer to Figure 1 for a general interface to Data and Clock. (Note: if you
are going to use a microcontroller such as the PIC, where 1/O is bidirectional, you may skip the transistors and
buffers and use the same pin for both input and output. With this configuration, a "1" is asserted by setting
the pin to input and let the resistor pull the line high. A "0" is then asserted by changing the pin to output and
write a "0" to that pin, which will pull the line to ground.)

FENIA$EBE A LA YA B . . +5V. BIERIEEr. host GHENL #&HE+5V, I
A/ BUbR IR 3 42 2] host 11 FELIE M Lo HiCHs AN P2 48 AR R 1Y), SR B A 1 DR e
HP I HAR S 2 N hr S GE4E 000 AR TIRERES] PS/2 Blbr. BEAT B host R AE N BRI Bte £ 122

33 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

A—NRM B HBE. & “0” st iR, B “17 Bk Lilimi . %K1 g R
TG GERG WUERRITSEALHI SR PIC XA Rzl ay, T EA18 VO B IAEX A 1, fRa)
AT it (R gzt 17, 5 LB A 1R — AN JEEA T ARt o AEIXCPPAHAS GO0 &, ZEBCE T O A

BREN TGP Edr g B ey, BRI S s S N 0 BURANE I, LB N 2.
+h¥

Figure 1: Open-collector interface to Data
and Clock. Data and Clock are read on the
microcontroller's port A and B, respectively.
Both lines are normally held at +5V, but can §

be pulled to ground by asserting logic 1 on
pu grou y g log e

B : — Clock
4%
D u,y)

C and D. As a result, Data equals D,
inverted, and Clock equals C, inverted.

A

Bl 1: ZIO 2 A i 26 1 B2 F AR T i 2 1 o
K AT o3) e B AR 0 A B 1R B
Ui TN o X P40 20 PR FF+5V, H]
PAFESS T C R D 5N 1 K Hr 3 Hh . 45 2,
i e D A, IR C R A

Microcontroller

The PS/2 mouse and keyboard implement a bidirectional synchronous serial protocol. In other words, Data is
sent one bit at a time on the Data line and is read on each time Clock is pulsed. The keyboard/mouse can
send data to the host and the host can send data to the device, but the host always has priority over the bus and
can inhibit communication from the keyboard/mouse at any time by holding Clock low.

PS/2 BARATEEAL JEAT — Bl][R0 AT Bl AU, BECEURZ B — L8 T HLARRAE N Bk
AR N . B BUPR AT DURCR B B L, T AR AT DUAGEEE B e, (H AL
FERL PSR, & T AEAR AT IR ik B T8 A/ AR FE IR, L ZE bR T,

Data sent from the keyboard/mouse to the host is read on the falling edge of the clock signal (when Clock goes
from high to low); data sent from the host to the keyboard/mouse is read on the rising edge (when Clock goes
from low to high.) Regardless of the direction of communication, the keyboard/mouse always generates the
clock signal. If the host wants to send data, it must first tell the device to start generating a clock signal (that
process is described in the next section.) The maximum clock frequency is 33 kHz and most devices operate
within 10-20kHz. If you want to build a PS/2 device, I would recommend keeping this frequency around 15
kHz. This means Clock should be high for about 40 microseconds and low for 40 microseconds.

MNBERE/ BRbR A AE B BB RN B 5 B R By CHI B A S AR BRI %) el A ENLUAGR
FIBERL/ BUbR B AR BT CARR AR B m 5D i, ANVEB AT M SR, B RS
AP EN MG T o AR EHLERE A, A S YR BRI AR AR R E S G REREAE Y
TR IR) o BRI IR T 33kHz, 1 K2 8¢ TAELE 10—20kHz. W1 SRARZERIVE—AN PS/2 &
oo AEAARAUIRIEBICE 15kHz Zida o IX R SR IN B RZ 2 5 40 TS 40 TR0

All data is arranged in bytes with each byte sent in a frame consisting of 11-12 bits. These bits are:

P 8s 2 A 7R, BT BT 11— 12 M. XA SR

1 start bit. This is always 0. 1 NMERAL, B2EHN0
8 data bits, least significant bit first. 8 MR, ARALAEHT

A4 01 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

1 parity bit (odd parity). 1 AMREEAL, BTALE

1 stop bit. This is always 1. 1AM IbAL, EoEh 1

1 acknowledge bit (Host-to-device communication only) | 1 DNNEAL XFE F MU 3244 FIIE TR

The parity bit is set if there is an even number of 1's in the data bits and reset (0) if there is an odd number of
1's in the data bits. The number of 1's in the data bits plus the parity bit always add up to an odd number (odd
parity.) This is used for error detection.

WERBAE AL P S RE 1, A 1 QUREEE A RS A 1 R R 0. B AL
1SS0 EAZIRAT St A A7 8 Gt 2 A A o 3K PR IEAT B R R 1

When the host is sending data to the keyboard/mouse, a handshaking bit is sent from the device to
acknowledge the packet was received. This bit is not present when the device sends data to the host.

M ENURIE B B BRI, B i MR TE Sk BdE L C 2 s, XA A LR
2 RARHAE B EALR LR

Device-to-Host Communication:

& B ENLRE RS :

The Data and Clock lines are both open collector (normally held at a high logic level.) When the keyboard or
mouse wants to send information, it first checks Clock to make sure it's at a high logic level. If it's not, the
host is inhibiting communication and the device must buffer any to-be-sent data until it regains control of the
bus (the keyboard has a 16-byte buffer and the mouse's buffer stores only the last packet sent.) If the Clock
line is high, the device can begin to transmit its data.

Ha A P2k AR S BT I SR QEW OREF P B B bR et X BRI, B stk At
PPN E TR R o WERANE , TR0 AL TR, B8 20 S A] R IE IR 4 L 21
FIRAF LTI B 16 TGP X, T SR 2 X ANAF i B s — A AR O EE A0 .
R PHEE R, B min] UT a8 Kl .

As I mentioned in the previous section, the keyboard and mouse use a serial protocol consisting of 11-bit
frames. These bits are:

WA BRI, AT AR AT AR AR 11 AL AT IR IR SR

1 start bit. This is always 0. 1N, 2N 0
8 data bits, least significant bit first. 8 MNEIRAL, RALAET
1 parity bit (odd parity). 1 MREAL, AR

1 stop bit. This is always 1. 1AM IR, EJER 1

Each bit is read by the host on the falling edge of the clock, as is illustrated in Figures 2 & 3.
BECLAE BN N B g EALEE N, W 2 F1 3 s

Figure 2: Device-to-host CLOCK
communication. The Data
DATA

line changes state when Clock
is high and that data is latched
on the falling edge of the clock

START
DATAD
DATA1
DATAZ
DATA3
DATA4
DATASL
DATAG
DATAY
PARITY
STOP

signal.

5
=
S
=

02-11-24 KA

PS/2 HiRk&H% #%: Adam Chapweske i¥: Roy Show

Bl 2 BRI N, il s, R UrRRE, EReE 510 BvEEaR g i

Figure 3: Scan code for the "Q" A xR
key (15h) being sent from a I
keyboard to the computer.
Channel A is the Clock signal;
channel B is the Data signal.

3: “Q7 B S B A i
FITHEAL. WIE A ENEMES,
iHiE B Z T .

The clock frequency is 10-16.7kHz.
The time from the rising edge of a

clock pulse to a Data transition
should be at least 5 microseconds. The time from a data transition to the falling edge of a clock pulse should
be at least 5 microseconds and no greater than 25 microseconds. This timing is very important--you should
follow it exactly. The host may pull the line low before the 11th clock pulse (stop bit), causing the device to
abort sending the current byte (this is very rare.) After the stop bit is transmitted, the device should wait at
least 50 microseconds before sending the next packet. This gives the host time to inhibit transmission while
it processes the received byte (the host will usually automatically do this after each packet is received.) The
device should wait at least 50 microseconds after the host releases an inhibit before sending any data.

I BRAA O 10—16.7kHz, ARk B 1) BT 30— AN Kl e AR IR N 1) 22 /0 84T 5 oid . Bdle A AL 3 i
B R B (RIS 1) 22 AT 5 ORI HAN KT 25 38D o IX AN IN AR 8 F 2 — RN A% R
EHUAT LRSS 11 AN BRIk of (1A Z ATEZRAR, SEBABET O M7 GZRARF LD,
FEFF LB AR, BERAERIE NN 2D NAZ AR 50 2280 . R 48 EHUIN R) 24 & A BRI 74
I AGE CENERCR RN, 8% BSIMOZAN). ETHURBENEG, B 20 WAZAE R IEAT]
BT 50 =P,

I would recommend the following process for sending a single byte from an emulated keyboard/mouse to the
host:
TRAEFE T 10 AR R A — A B 1 A7 BB/ B) AL -

1) Wait for Clock = high.
2) Delay 50 microseconds.
3) Clock still = high?
No--goto step 1
4) Data = high?
No--Abort (and read byte from host)
5) Delay 20 microseconds (=40 microseconds to the time Clock is pulled low in sending the start bit.)
6) Output Start bit (0) \ After sending each of these bits, test
7) Output 8§ data bits > Clock to make sure host hasn't pulled it
8) Output Parity bit / low (which would abort this transmission.)
9) Output Stop bit (1)
10) Delay 30 microseconds (=50 microseconds from the time Clock is released in sending the stop bit)
1) Z£F Clock = high,
2) HERF 50 TP

6 6 1L 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

3) Clock s {/5IHA4 high?
No—=#%5 1 &
4) Data = high?
No—J#5r (OF H A FEHLIF 1)
5) ZEIR 20 =FP (=40 fHFP to the time Clock is pulled low in sending the start bit.)
6) LA 1L (0) \ FERIRITA IR AL A AL
7 i 8 MR > P B EHLE AR T
8) iR HAL [G ENL BRI RALIRD
9) iR (1)
10) #EIR 30 ZFP (=50 74> from the time Clock is released in sending the stop bit)

The process for sending a single bit should then be as follows:

FNR R AR B

1) Set/Reset Data

2) Delay 20 microseconds
3) Bring Clock low

4) Delay 40 microseconds
5) Release Clock

6) Delay 20 microseconds
1) BCE/EALEHE

2) iR 20 AP

3) CREF

4) LB 40 AP

5) FEIBU Bl

6) TR 20 ThFP

Here is some sample code written for the PIC16F84 that follows the above algorithms to send a byte to the
host. "Delay" is a self-explanitory macro; "CLOCK" and "DATA" are the bits connected to the Clock and
Data lines; "TEMPOQ", "PARITY", and "COUNTER" are all general purpose registers. Note that in the
"PS20utBit" routine, the Data and Clock lines are brought low by setting the appropriate 1/O pin to output (it's
assumed their output was set to "0" at the beginning of the program.) And they are allowed to float (high) by
setting the I/O pin to input (and allow a pull-up resistor to pull the line high.) This was written for a PIC
running at 4.61 MHz +/- 25% (RC oscillator: 5k/20pF). This is very important for timing considerations.
AT R L IOk Rk — A AT B TN PIC16F84 [BAFEBIARALY . “ Delay ” A& — [Ui %%

“CLOCK” H1 “DATA” JEIER B BPAEE L L AALHIC; “TEMPO”, “PARITY” Al “COUNTER”
e — M H A A7 de o TERE “PS2outBit” IR, K 2RI fh 2l i ¥ Bd 24 1) /O A 4t 2
KPR (ERPITTGS, eI E ol 00, WILE VO B, AT ave Lk s r

(RVF R H BRI B A B P . R iigs PIC HIMARASIZAT T 4.61MHz +/-25% (RC #i& % #% : Sk/20pF),
XAMENS 7 I 2 AR B2

ByteOut movwf TEMPO ;Save to-be-sent byte
InhibitLoop btfss CLOCK ;Check for inhibit

goto InhibitLoop

Delay 50 ;Delay 50 microseconds

7 A7 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

btfss CLOCK ;Check again for inhibit
goto InhibitLoop

btfss DATA ;Check for request-to-send
retlw OxFF

clrf PARITY ;Init reg for parity calc

movlw 0x08
movwf COUNTER

movlw 0x00

call BitOut ;Output Start bit (0)
btfss CLOCK ;Test for inhibit
goto ByteOutEnd
Delay 4

ByteOutLoop movf TEMPO, w
xorwf PARITY, ;Calculate parity
call BitOut ;Output Data bits
btfss CLOCK ;Test for inhibit

goto ByteOutEnd
rrf TEMPO, £
decfsz COUNTER, f
goto ByteOutLoop
Delay 2

comf PARITY, w

call BitOut ;Output Parity bit
btfss CLOCK ;Test for inhibit
goto ByteOutEnd
Delay 5
movlw OxFF
call BitOut ;Output Stop bit (1)
Delay 48
retlw 0x00
ByteOutEnd bsf STATUS, RPO ;Host has aborted
bsf DATA ;DATA=1
bsf CLOCK ;CLOCK=1
bef STATUS, RPO
retlw OxFE
BitOut bsf STATUS, RPO
andlw 0x01
btfss STATUS, Z
bsf DATA
btfsc STATUS, Z
bef DATA
Delay 21
bef CLOCK
Delay 45

bsf CLOCK

28 ik 8 1L 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

bef STATUS, RPO
Delay 5

return

Host to Device Communication:

EHLBN B & B

The packet is sent a little differently in host-to-device communication...

PIL WA FA T LR el i e

First of all, the PS/2 device always generates the clock signal. If the host wants to send data, it must first put
the Clock and Data lines in a "Request-to-send" state as follows:
G, PSI2 WA RS ENEME T . IR EHERIE A, A SN PR B L BB K
RIE” RAES WRIR:

® Inhibit communication by pulling Clock low for at least 100 microseconds.

® i R Bk /b 100 FAD R AMHIE .

® Apply "Request-to-send" by pulling Data low, then release Clock.

® i NREIRLOR N U RAE”, RERETBON B

The device should check for this state at intervals not to exceed 10 milliseconds. When the device detects
this state, it will begin generating Clock signals and clock in eight data bits and one stop bit. The host
changes the Data line only when the Clock line is low, and data is latched on the rising edge of the clock pulse.
This is opposite of what occours in device-to-host communication.

B NAZAEAE L 10 2P0 RS N SR A X AVRAS . BRI B IXAVIRES, eR TG 7 LI B
5, JF HI KRl N AN B AT — AN A7 o ERUCE I AR I e Bl £, 1K
P AL KT B LT BAE o R AR A Vet B E LI AR Rl R I TR B A S

After the stop bit is sent, the device will acknowledge the received byte by bringing the Data line low and
generating one last clock pulse. If the host does not release the Data line after the 11th clock pulse, the device
will continue to generate clock pulses until the the Data line is released (the device will then generate an error.)
FEAE AL AR 5, BEA& BN A MR 15, R s AT A dm bkt R EWLAE SR
11 AN BRI R AR TBCE S, A8 KG AR A2 Il lk b B2 e ORI CORJm L8 g ™ A — M

o

The Host may abort transmission at time before the 11th clock pulse (acknowledge bit) by holding Clock low
for at least 100 microseconds.

EHUAT AFESR 11 AN Bkl ONAZAALD Firep bk Aik, B i ppek 220 100 A

To make this process a little easier to understand, here's the steps the host must follow to send data to a PS/2

device:

LAAFIXA R D) TR, EHLZHE b 2 B IL e 2 PS/2 B4

1) Bring the Clock line low for at least 100 microseconds.
2) Bring the Data line low.

3) Release the Clock line.

4) Wait for the device to bring the Clock line low.

9oy 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
5) Set/reset the Data line to send the first data bit

6) Wait for the device to bring Clock high.

7) Wait for the device to bring Clock low.

8) Repeat steps 5-7 for the other seven data bits and the parity bit
9) Release the Data line.

10) Wait for the device to bring Data low.

11) Wait for the device to bring Clock low.

12) Wait for the device to release Data and Clock

1) B RR S D 100 TP

2) JEEHELIR,

3) REdEZ.

4) ERF R pP R,

5) WE/INL L IR — AN AR

6) AP BAATIN R .
7).

8) EE 575 KIERINK T AEHEAL AL .
9) RIEREL.

10) SEAF B ICHIE e i

11) AR5 B AEIN B K.

12) ZEAF BT TR AN Bl

Figure 3 shows this graphically and Figure 4 separates the timing to show which signals are generated by the
host, and which are generated by the PS/2 device. Notice the change in timing for the Ack bit--the data
transition occours when the Clock line is high (rather than when it is low as is the case for the other 11 bits.)

K 3 IETE LRI 4 LRSI I P 2o T i ENL R 15 5 Al PS/2 Wk AR 5 o 1 B o I
FERIEAR — S (O A AR B A s I O T e 11 A7 2 e A IR %)

Figure 3: Host-to-Device Communication.
K3 ENLE B A R TR

CLOCK
DATA U

START
DATAD
DATA1
DATAZ
DATA3
DATA4
DATASL
DATAG
DATAY
PARITY
STOP
ACK

Figure 4: Detailed host-to-device communication.
K 4. LRI TE K PR L

10 jidt 10 7T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

;4—[a] (b]
- CLOCK il :
57 ; ;
= : .
T opara WA U N 00 0 K N
A cLock
if
O DATA L

START
DATAD
DATA1
DATAZ
DATA3
DATA4
DATASL
DATAG
DATAY
PARITY
STOP
ACK

Figure 4 shows two important timing considerations: (a), and (b). (a), the time it takes the device to begin
generating clock pulses after the host initially takes the Clock line low, must be no greater than 15ms; (b), the
time it takes for the packet to be sent, must be no greater than 2ms. If either of these time limits is not met,
the host will generate an error. Immediately after the packet is received, the host may bring the Clock line
low to inhibit communication while it processes data. If the command sent by the host requires a response,
that response must be received no later than 20ms after the host releases the Clock line. If this does not
happen, the host generates an error. As was the case with Device-to-host communication, no Data transition
may occur with 5 microseconds of a Clock transition.

4 IR T A EEPER A (@ M (b)o (a) 7E BN EIR LIRS, B TTa6 ™ A Bk
MR, BZAKT 15ms; (b)) Bl A AL I I 20 KT 2ms. ARIE AN SN 2, E
LR P AR . AR, N T AR BEECH S7 Z3E pf e fr AR AR T R WU AR 1 fi
L BRA AN, XA DA ZRLE EHURE BN EP 2R IS 20ms 2 PR s es], ML AR
AR AEBCR B ENUE TR OO, RIS IR) 5 TR A AN Y 2 R A B AR R DL

If you want to emulate a mouse or keyboard, I would recommend reading data from the host as follows:

BRSR AR LA PR A, FRAEAEIRAZ AR I R A N AN H s«

In your main program, check for Data=low at least every 10 milliseconds.
If Data has been brought low by the host, read one byte from the host
TEARI R P, /D5 10 SRR B0E 26 02 5 1K

W AR L O ERURAR, WATHLERE 71

1) Wait for Clock=high
2) Is Data still low?
No--An error occurred; Abort.

3) Read 8 data bits \ After reading each of these bits, test
4) Read parity bit > Clock to make sure host hasn't pulled it
5) Read stop bit / low (which would abort this transmission.)

6) Data still equals 0?

Yes--Keep clocking until Data=1 then generate an error
7) Output Acknowledge bit
8) Check Parity bit.

Generate an error if parity bit is incorrect

11 0L 11 T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
9) Delay 45 microseconds (to give host time to inhibit next transmission.)
1) RPN B
2) HHREAR R ?
AN—=HHRK L 5T
3) A 8 AL \ FEBENIX LA 5,
4y BEARLAL > DU 2 B B LA
5) BEAfEIRAL / AR A X IR AL
6) HARLAIIH 0 2
e IRFEN A E R =1, AR5 AR
7)Y
8) AL
U SRR AL AN TEAf W 7 A — A
9) LR 45 WAr (g AU TSR %%

Read each bit (8 data bits, parity bit, and stop bit) as follows:

1) Delay 20 microseconds
2) Bring Clock low

3) Delay 40 microseconds
4) Release Clock

5) Delay 20 microsecond
6) Read Data line

SN PR, (8 AN EUHRAT L A I A A 147D -

1) EIR 20 1
2) HEREPR
3) FEIR 40 TP
4) REHBh

5) FEIR 20 THFR
7) R

Send the acknowledge bit as follows:

1) Delay 15 microseconds
2) Bring Data low

3) Delay 5 microseconds
4) Bring Clock low

5) Delay 40 microseconds
6) Release Clock

7) Delay 5 microseconds
8) Release Data

FEANR Y BB N A«

1) ER 15 ffb
PR (8%-€/ T2 E DA (S
3) HEIR 5 TP
4) R R
5) LR 40 THRD
6) BRI Pk
7) HEIR 5 TP

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

8) REAE L

Here is some sample code written for the PIC16F84 that implements the above algorithms to read data from a
PS/2 host. "Delay" is a self-explanitory macro; "CLOCK" and "DATA" are the port bits connected to the
Clock and Data lines; "TEMP0", "PARITY", and "COUNTER" are all general purpose registers. Note that in
the "PS2inBit" routine, Clock is brought low by setting the appropriate I/O pin to output (it's assumed they
were set to "0" at the beginning of the program.) And it is allowed to float (high) by setting the I/O pin to
input (and allow a pull-up resistor to pull the line high.) Timing was worked out for a PIC running at 4.61
MHz +/- 25% (RC oscillator with values 5k/20 pF). Will work for any oscillator between 3.50 MHz - 5.76
MHz.
XA Yy PICI6FS4 [AFFEISEILT LR PS/2 EHLSIUEHR 575, “Delay” J&—AAY &%
“CLOCK” H1 “DATA” JEIEH BN AN Eda 2k LA s “TEMPO”, “PARITY” Al “COUNTER”
#7474 . AL “PS2inBit” BIFEd, HIEHH) VO M, KAEN PR (FEFER
MTFAR AL E AR E N 000 B VO BN L e AT BV samy F P C L BEAE A e by i HLFD
ik BB E I IR, PIC Wi24T T 4.61MHz +/-25% (RC ¥R3% % IOE & 5k/20pF). 48Rt] LL T 4%
TAEA] 3.50MHz~5.76MHz [F132 % %5 .

Byteln btfss CLOCK ;Wait for start bit
goto Byteln
btfsc DATA
goto Byteln
movlw 0x08

movwf COUNTER

clrf PARITY ;Init reg for parity calc
Delay 28
ByteInLoop call Bitln ;Clock in Data bits
btfss CLOCK ;Test for inhibit
retlw OxFE

bef STATUS, C
rrf RECEIVE, f
iorwf RECEIVE, f
xorwf PARITY.f
decfsz COUNTER, f
goto ByteInLoop

Delay 1
call Bitln ;Clock in Parity bit
btfss CLOCK ;Test for inhibit
retlw OxFE
xorwf PARITY, f
Delay 5

BytelnLoop1 Delay 1
call Bitln ;Clock in Stop bit
btfss CLOCK ;Test for inhibit
retlw OxFE

xorlw 0x00

btfsc STATUS, Z ;Stop bit=1?

F13 gt 13 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

clrf PARITY No--cause an error condition.
btfsc STATUS, Z ;Stop bit=1?

goto ByteInLoopl ; No--keep clocking.

bsf STATUS, RPO ;Acknowledge

bef DATA

Delay 11

bef CLOCK

Delay 45

bsf CLOCK

Delay 7

bsf DATA

bef STATUS, RPO

btfss PARITY, 7 ;Parity correct?

retlw OxFF ; No--return error

Delay 45
retlw 0x00
Bitln Delay 8

bsf STATUS, RPO
bef CLOCK
Delay 45

bsf CLOCK

bef STATUS, RPO

Delay 21
btfsc DATA
retlw 0x80
retlw 0x00

Other Sources / References:

HERBENSE:

Adam's micro-Resources Home - Many pages/links to related information.
The AT Keyboard - My page on AT keyboards

The PS/2 Mouse - My page on the PS/2 mouse

Synaptics Touchpad Interfacing Guide -Very informative!

PS/2 Keyboard and Mouse Protocols - Timing diagrams.

Holtek - Informative datasheets on many different PS/2 mice (and other peripherals).
More Links - Many more links to related resources.

14 T 14 7T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

W AT-PS/2 BN
Introduction:

EIE=E

This article tries to cover every aspect of AT and PS/2 keyboards. It includes information on the low-level
signals and protocol, scan codes, the command set, initialization, compatibility issues, and other miscellaneous
information. Since it's closely related, I've also included information on the PC keyboard controller. All
code samples involving the keyboard interface are written in assembly for Microchip's PIC microcontrollers.
All code samples related to the keyboard controller are written in x86 assembly.

R SRR G AT R PS/2 BERL & 7N 8. &S T ARG E SRR, . k.
e AR E) UM A FR R B Bab B 7ok T PC BRI M IE B, Xl ez m 2k
WA . AT B AR I ARRS A2 H] Microchip 1) PIC & Hil 28 (E4iE 5 15« I S Al as
FHOC A 51 52 1] x86 T4 155 [.

I should mention that all of the information in this article comes from my own experiences and other sources
that may or may not be accurate. I did not consult any official documentation of since none has been
available to me. Therefore, I provide the following disclaimer:

PEAZ U Rt AR SCE R BIAE Bk A3 A SRR HAR BRI REAIEM . A S%
TR E TS, OB BB 20 . DM 3 i i i e A

ALL INFORMATION WITHIN THIS ARTICLE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. IDO NOT GUARANTEE ANY
INFORMATION IN THIS ARTICLE IS ACCURATE, AND IT SHOULD BE USED FOR ABSTRACT
EDUCATIONAL PURPOSES ONLY.

G KA A OB S, XA H S8 12 SR AR UAR T 1

You may click here to goto my main page. There, you will find other articles, code, projects, and links
related to the computer keyboard. Click here for more information about me, including my resume. If you
find any errors in this article or have any questions, feel free to send me an email. I don't have time to
respond to them all, but I will read them all and keep your questions/comments in mind when updating this
page.

e I AT LRI Bty 0 AR L, R e AL FAR S T SERU B A Pl) S L AR L TR AR
XA PR IR R, AR A SRR SR T R B R R s IR AT Bk), TR TS E
email. FKATBEBATIN A5 Fr A7 AR5, (H IR EAT, AL SEF A 9 DI S A AR 1) R A

A History Lesson:
EES: RS

The most popular keyboards in use today include:

LA AL AR v R 4K 22 Bt AT (K B A B 37 -

USB keyboard - Latest keyboard supported by all new computers (Macintosh and IBM/compatible). These
are relatively complicated to interface and are not covered in this article.

IBM/compatible keyboards - Also known as "AT keyboards" or "PS/2 keyboards", all modern PCs support this
device. They're the easiest to interface, and are the subject of this article.

FAs it 15 0 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

ADB keyboards - Connect to the Apple Desktop Bus of older Macintosh systems. These are not covered in
this article
USB ##f — &) HHLMEEL, BB Nk SHLSCRF (Macintosh AT IBM/ X HARAEHL . EA14T B
ORI R 84 MO AV S IR R s
IBM Hlasae st — tnifs “ AT 847 5 “PS/2 BEAL”, P BRI PC #SCRFIZAN 4 . BTN 5
fﬁ&%‘ﬂfﬁﬁ 3, A
ADB ##f — %3723 Macintosh &1 Apple 52k, NS CHFES,

IBM introduced a new keyboard with each of its major desktop computer models. The original IBM PC, and
later the IBM XT, used what we call the "XT keyboard." These are obsolete and differ significantly from
modern keyboards; the XT keyboard is not covered in this article. Next came the IBM AT system and later
the IBM PS/2. They introduced the keyboards we use today, and are the topic of this article. AT keyboards
and PS/2 keyboards were very similar devices, but the PS/2 device used a smaller connector and supported a
few additional features. Nonetheless, it remained backward compatible with AT systems and few of the
additional features ever caught on (since software also wanted to remain backward compatible.) Below is a
summary of IBM's three major keyboards.
IBM 5T — Mg B AR B A 0 & Bk T2 s vk LAY S A C 4% Be L1 IBM PC G K IBM XT
ﬁ}?ﬁ MIFRATRRZ Ny “XT 8L N TR EFFRIACH B — R ABA) OCT XT B A fEA S
Wh. JERHILT IBM AT R4, HkHILIBM PS/2. A5 R AT E A A, A
SO AR, AT SN PS/2 BEELI 0 AL e, (B PS/2 AT T SE/NRERL S I F H SRR B A
MRt BRI, EUMRE T 5 AT REMRARE, AL 2 AT B IRe At PS4 it s 2 Op
FF G2 RN TBM =l 32 BEGHAE (A 22 .

IBM PC/XT Keyboard (1981):
IBM PC/XT %% (1981):

83 keys 83

5-pin DIN connector 5 i DIN &84

Simple uni-directional serial protocol {7 P PR B i) ER AT B

Uses what we now refer to as scan code set 1 K BATTIAC TR S A 58 — B s 4
No host-to-keyboard commands WA ENLRV A I 2

IBM AT Keyboard (1984) - Not backward compatible with XT systems.

84 -101 keys 84—101 %

5-pin DIN connector 5 i DIN & 4%

Bi-directional serial protocol) B AT EM L

Uses what we now refer to as scan code set 2 K FRATIAE A S (A 0 5 — g 4
Eight host-to-keyboard commands J\AS LB BERL (1) A 2

IBM PS/2 Keyboard (1987) - Compatible with AT systems, not compatible with XT systems.

84 - 101 keys 84—101 %

6-pin mini-DIN connector 6 JH mini-DIN & #:8%
Bi-direction serial protocol R Jw) B AT ML

Offers optional scan code set 3 TR PTIE 28 =g 4E

16 pidt 16 U1 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
17 host-to-keyboard commands 17 A LN 1 2

The PS/2 keyboard was originally an extension of the AT device. It supported a few additional
host-to-keyboard commands and featured a smaller connector. These were the only differences between the
two devices. However, computer hardware has never been about standards as much as compatibility. For
this reason, any keyboard you buy today will be compatible with PS/2 and AT systems, but it may not fully
support all the features of the original devices.

PS/2 I W)t AT B 9 g o &SR/ RN A AL B A 1K) iy I F LU ERLER ARSI o AEIX Pl 12
e Z A IX A X o ER TN R A SR TEIXAE 2 hsdE .l T IXRR AL, R4 RS 3]
AEATBESL AR AN PS/2 A1 AT RGUHMEA, (HE] REAN 58 2 S RF A B K BT AL

Today, "AT keyboard" and "PS/2 keyboard" refers only to their connector size. Which settings/commands
any given keyboard does or does not support is anyone's guess. For example, the keyboard I'm using right
now has a PS/2-style connector but only fully supports seven commands, partially supports two, and merely
"acknowledges" the rest. In contrast, my "Test" keyboard has an AT-style connector but supports every
feature/command of the original PS/2 device (plus a few extra.) It's important you treat modern keyboards as
compatible, not standard. If your project relies on non-general features, it may work on some systems, but
not on others...

AR, “AT HEEL” N “PS/2 B A LCEATRERAS KN o AR 45 58 BB SR AN SCRPIREE B
Lot BN NATI . B, FRBEAE R AL PS/2 WU ISR, (B e E i,
FR SCRFPIAN AT 2, RHAR A i e “ N 7o AR, Bl B AT KUK IR
HZ SRR IR PS/2 B IR MR/ A% GEIn LSRN 2D X R E AU IR A B
R M TE T A ARE . A R AR TR T L8 — R AL, BT REAE 2R G L TTAR, MifES) —
o FHIARE,

Modern AT-PS/2 compatible keyboards
AR AT-PS/2 Aezet i

Any number of keys (usually 101 or 104)

5-pin or 6-pin connector; adaptor usually included
Bi-directional serial protocol

Only scan code set 2 guaranteed.

Acknowledges all commands; may not act on all of them.
AR H 4k GEH O 101 8 104)

5 BAER 6 JANERERS, TR TGN A

L] AT MY

A BRI AR R RIE)

BT B A AH] BEASZE T A AR AT H

Footnote 1) XT keyboards use a completely different protocol than that used by AT and PS/2 systems, making it
incompatible with the newer PCs. However, there was a transition period where some keyboard controllers
supported both XT and AT-PS/2 keyboards (through a switch, jumper, or auto-sense.) Also, some keyboards
were made to work on both types of systems (again, through the use of a switch or auto-sensing.) If you've
owned such a PC or keyboard, don't let it fool you--XT keyboards are NOT compatible with modern
computers.

HIE 1) XT 83T T—F7F AT FIPS/2 2 T2 R, UL EAFIEH T PC FE25. H
1717 02-11-24 K&Af

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

AL i P s 1 — R L FE T LB XT X #F AT-PS/2 #at G T, BEZEEL & i),
Nﬁgﬂﬁﬁfﬁ ARG LT (FRREH, 2T HZ D). WRGTZFFN PC 2t
wts NEREEA T — XT @I AT ACHT e F P -

General Description:

— Rk -

Keyboards consist of a large matrix of keys, all of which are monitored by an on-board processor (called the
"keyboard encoder".) The specific processor varies from keyboard-to-keyboard but they all basically do the
same thing: Monitor which key(s) are being pressed/released and send the appropriate data to the host. This
processor takes care of all the debouncing and buffers any data in its 16-byte buffer, if needed. Your
motherboard contains a "keyboard controller" that is in charge of decoding all of the data received from the
keyboard and informing your software of what's going on. All communication between the host and the
keyboard uses an IBM protocol.

AL LA T AN RIYRRRER, E AT 2 e A H AR B A A B (A R S A D SR AN
(1o FARIAC B dsAEBE A 5 SR 2 1) 2 2 REAL I, AR EATIBEAS LA ASCA [RE AR o5 = M AR e B ol
PR ERIR T, JHEIRE S B L. WA LT, AEBRERAC B P B LRSI R 16 TSR
PRDCHLZE PP o AR TEAREL T A “RERFESIES 7, ST TSR BB R, R URRI K
PRAT AR AT o AE NI AL 22 18] B3 AT HT IBM R B0

Footnote 1) Originally, IBM used the Intel 8048 microcontroller as its keyboard encoder. The following is

a short list of modern keyboard encoders:

BT 1D 12 #]. IBM &/ Intel8048 THALPE 75 1Ty EHI @it Hild s . A1 A2 T A Ct v i 9 19 4 5 .

Holtek: HT82K284, HT82K6284, HTS82K68A, HTS2K68E
EMC: EM83050, EM83050H, EM83052H, EM83053H,
Intel: 8048, §049

Motorola: 6868, 68HCI11, 6805

Zilog: 28602, Z8614, 28615, Z86C15, ZS6E23

Footnote 2) Originally, IBM used the Intel 8042 microcontroller as its keyboard controller. This has since
been replaces with compatible devices integrated in motherboards' chipsets. The keyboard controller is

covered later in this article.
ST 2) 547 IBM (T Intel /9 8042 (75 a5 12 B HI i 75 a5« D1l CEpAERT A, I
PYTBRAT LT AT BT T a5 A AR I J7 78 R 1T A 2%

Electrical Interface / Protocol:

A B/

The AT and PS/2 keyboards use the same protocol as the PS/2 mouse. Click here for detailed information
about that protocol.

ATﬁmQ%ﬁ@%T%%Qmﬁ PRI R HL) ASRAG G IXAN B i

CEEFE: R TARSC R SCEE R v, S AR SR — bR I 2D

Scan Codes:

REFINE

FA8 pit 18 uL 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

Your keyboard's processor spends most of its time "scanning", or monitoring, the matrix of keys. If it finds
that any key is being pressed, released, or held down, the keyboard will send a packet of information known as
a "scan code" to your computer. There are two different types of scan codes: "make codes" and "break codes".
A make code is sent when a key is pressed or held down. A break code is sent when a key is released.
Every key is assigned its own unique make code and break code so the host can determine exactly what
happened to which key by looking at a single scan code. The set of make and break codes for every key
comprises a "scan code set". There are three standard scan code sets, named one, two, and three. All
modern keyboards default to set two.(1)

R TR A B S AE DRAR 22 1 I TSR it A e BRI o G SRR RO B L R AT, SRR
& S BRI EN L. R RIS IS A WY 7. 2 AR R BE
FER RIS 2 DMEPORBOR AOE WY o BEANLHE B T ME— 1R AN, X RS A
;S Sk B E T RV A I R DAED oy g 7 T g S o N T R S B E 1 TR SN S e = iU E B i
{TE S5 0711 PR s SN Vi = 1k =1 S/ AME0s SR NN G R Ak s R T

CPETE: TR AT A2 IR 9 R, W SRR S LI B e, 5 Rk

So how do you figure out what the scan codes are for each key? Unfortunately, there's no simple formula for
calculating this. If you want to know what the make code or break code is for a specific key, you'll have to
look it up in a table. I've composed tables for all make codes and break codes in all three scan code sets:

IR AARBETH S R AMZ B ARSI 2 ARSERE, B — N B A T AT S R o SRR S iE
FERE s B T AITRY, VR AIAE R IRAT . OO =R b T R A WA 5
TR

Scan Code Set 1 - Original XT scan code set; supported by some modern keyboards
BRI — JIRH XT SR, R B A S

Scan Code Set 2 - Default scan code set for all modern keyboards
BRI — BT I AL BA RS A

Scan Code Set 3 - Optional PS/2 scan code set--rarely used
AR — AIIER PS/2 HH AR (IRADEHD

CFEFE: XTI P A RS, i IR AN R VI SOAR R % 1. 24 3 1. 24 Adam Chapweske T T4E

Footnote 1) Originally, the AT keyboard only supported set two, and the PS/2 keyboard would default to set
two but supported all three. Most modern keyboards behave like the PS/2 device, but I have come across a
few that didn't support set one, set three, or both. Also, if you've ever done any low-level PC programming,
you've probably notice the keyboard controller supplies set ONE scan codes by default. This is because the
keyboard controller converts all incomming scan codes to set one (this stems from retaining compatibility with
software written for XT systems.) However, it's still set two scan codes being sent down the keyboard's serial
line.

BT 1) 827, AT 8K EHFH —F, PS2 Ml [/ —EH IR —=F. FZHC 1T
KR PS2 ki, HBEP|PEANLIFH B, FH=FEdEPEBN LN [, DGR 2L
K PC Hife, 1A GEVT B PR T) s i L 7 5B — S 11 . XA A B4 155 7 s # Ty 7 A1 77
FGZYF—F (2K TR XT FZGHTHFRIFRE . 152 EVIH PR T ES T2 @t 19 #1r
.

Make Codes, Break Codes, and Typematic Repeat:
W WiEAHITER &

%19 gt 19 W 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

Whenever a key is pressed, that key's make code is sent to the computer. Keep in mind that a make code only
represents a key on a keyboard--it does not represent the character printed on that key. This means that there
is no defined relationship between a make code and an ASCII code. It's up to the host to translate scan
codes to characters or commands.

HE—ARYALT, XA SRR AL BITH L DB A USRS, L — %, EARIRE
JAE Fake T4 . IR EIE ISR ASCIT A2 [B IR, B2 EH OGRS 5

Bl AT

Although most set two make codes are only one-byte wide, there are a handfull of "extended keys" whose
make codes are two or four bytes wide. These make codes can be identified by the fact that their first byte is
EOh.

BARZ R B A E, (AT DR Y R AR T B Y T RE . IX R
AL S — AT 2 8 EOh,

Just as a make code is sent to the computer whenever a key is pressed, a break code is sent whenever a key is
released. In addition to every key having its own unique make code, they all have their own unique break
code(1). Fortunately, however, you won't always have to use lookup tables to figure out a key's break
code--certain relationships do exist between make codes and break codes. Most set two break codes are two
bytes long where the first byte is FOh and the second byte is the make code for that key. Break codes for
extended keys are usually three bytes long where the first two bytes are EOh, FOh, and the last byte is the last
byte of that key's make code. As an example, I have listed below a the set two make codes and break codes
for a few keys:

IR BRSNS ATV L, B R Wil = B - B S B e fRaE Y,
EAIH AT ME— FIWTRS . SEIE), ARAN T RS A ek th F4BE fR IRTAL) — (T AL 0 1) 2 TP A7 (A
WIRINER R . ZHCR WA P, NS AN IS Foh, 55 AN A IRIX AN RS . 5
JEAEE I W IR A AN, BRI AN T2 EOhFOh, d5 i — /N7 1 A IR A e A 1) e J — A
T AN AT, BRAE IS T LA SR A 5 A A W -

Key (Set 2)Make Code (Set 2) Break Code
"A" 1C F0,1C

"S5 2E F0,2E

"F10" 09 F0,09

Right Arrow EO, 74 EO, FO, 74

Right "Ctr]" EO, 14 EO, FO, 14

Example: What sequence of make codes and break codes should be sent to your computer for the
character "G" to appear in a word processor? Since this is an upper-case letter, the sequence of
events that need to take place are: press the "Shift" key, press the "G" key, release the "G" key, release
the "Shift" key. The scan codes associated with these events are the following: make code for the
"Shift" key (12h), make code for the "G" key (34h), break code for the "G" key(FOh,34h), break code
for the "Shift" key (FOh,12h). Therefore, the data sent to your computer would be: 12h, 34h, FOh,

34h, FOh, 12h.
. TR AN WAL & DL AL PP 91 AGR BRI TS, WA 5 “G” IEIEARI 74k
FURAF I ? BRIy e — KRG R, WSO AR ARy #h “Shift” 8, & T “G”
B, BEMC“G” B, BEK “Shift” . SIXLSI RIS RIAGTR . “ Shift” BERIIERS (12h),
“G” HEMIEYL (34h), “G” HEMWIY (FOh, 34h), “Shift” HEAYWIAS (Foh, 12h). B, K
220 T3 20 7T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
REEVORITH LA EE N %% . 12h, 34h, FOh, 34h, FOh, 12h,

If you press a key, its make code is sent to the computer. When you press and hold down a key, that key
becomes typematic, which means the keyboard will keep sending that key's make code until the key is released
or another key is pressed. To verify this, open a text editor and hold down the "A" key. When you first
press the key, the character "a" immediately appears on your screen. After a short delay, another "a" will
appear followed by a whole stream of "a"s until you release the "A" key. There are two important parameters
here: the typematic delay, which is the short delay between the first and second "a", and the typematic rate,
which is how many characters per second will appear on your screen after the typematic delay. The
typematic delay can range from 0.25 seconds to 1.00 second and the typematic rate can range from 2.0 cps
(characters per second) to 30.0 cps. You may change the typematic rate and delay using the "Set Typematic
Rate/Delay" (0xF3) command.

WMARAREE T — A, XANBEREA AL BTN BURIE T I A XA, XA B AR i T HLET
L SRR SR — AR XA B A) T3 R e A B A o SRR S L KBTI —
NICARGRE AL N “A” o MIRE e N, AT “a” SLZIMBUEIRI bR L. AR
MREIR G, H I —HH 1 “a”, HRRRR “A” . XEAWADEENSE: PUTER EH—
HMIZE A “a” ZIAHYEIR s HLET IR R AENIT N G R0 2 D P R BUR A e L HLETSE I (7E
AT LA 0.25 F221 1.00 55 HLAT 28R a 0T LU 2.0eps(F 45 R:F2) 2] 30.0cps. 78 7] LLH“ Set Typematic
Rate/Delay” (0xF3) iy 22K SR HLAT H AR AL

(PEFVE: typematic ASCHEHPER “WUAT 7. 427100 BB IE N LI R8T 2 2. B RIEAT automatic. WA S AF BN PRE &

Vrdlo D

Typematic data is not buffered within the keyboard. In the case where more than one key is held down, only
the last key pressed becomes typematic. Typematic repeat then stops when that key is released, even though
other keys may be held down.

HUT RIS AN B AL T 22k o AE 2 MBHE T RINEOUT , HAA RGN AR LT - XN
ROy, BUTER M IET, Ha T H AR R BRI A

Footnote 1) Actually, the "Pause/Break” key does not have a break code in scan code sets one and two. When
this key is pressed, its make code is sent; when it's released, it doesn't send anything.

HFE 1) Sy [, A — 5 B FTH K47 “Pause/Break ” (IS, 55X MG T K% E 1T,
2GEFEN, AT ARG KX

Reset:

R AL

At power-on or software reset (see the "Reset" command) the keyboard performs a diagnostic self-test referred
to as BAT (Basic Assurance Test) and loads the following default values:

FE B EAL (I “Reset” i) Ji, SEAAATIZI BRI BAT GEARIEMGD JFEAWT
IFISEKIER

Typematic delay 500 ms.
Typematic rate 10.9 cps.
*Scan code set 2.

*Set all keys typematic/make/break.
*Variable in some keyboards, hard-coded in others.

21 it 21 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
@ HLITIEIE N 500ms.

® HlLATH AN 10.9cps.

@ UE AR

@ E Ay g HLFT AR/ WY

RV TR IUE S LB LN T AR, AR AR AL LI AR A) CANRT AR,

When entering BAT, the keyboard enables its three LED indicators, and turns them off when BAT has
completed. At this time, a BAT completion code of either 0OxAA (BAT successful) or OxFC (Error) is sent to
the host.

PN BAT, 85T EM =4 LED $R4%, JFFESEH BAT Ja kHIEA]. B, BAT SEAUHE 4
0xAA (BAT J§Ih) 3 0xFC (A3451R) #iRIEF] EHL,

Most keyboards ignore their CLOCK and DATA lines until after the BAT completion code has been sent.
Therefore, an "Inhibit" condition (CLOCK line low) may not prevent the keyboard from sending its BAT
completion code

2 BB AL 2 E A T N R B 2 FL 2 BAT S8 AU A& o BT L, “4mifil” 40 CRPBRehr (i) wig
ANBERT 1SR AR AT BAT 58 .

Command Set:

WL

Every byte sent to the keyboard gets a response of 0xFA ("acknowledge") from the keyboard. The only
exceptions to this are the keyboard's response to the "Resend" and "Echo" commands. The host should wait
for an "acknowledge" before sending the next byte to the keyboard. The keyboard clears its output buffer in
response to any command. The following is a list of all commands that may be sent to the keyboard.
FEANROR B BRI T HNBERL ARG — A OXFA (“PNE ™D BN, E— I AMR 2 BN “Resend” Al
“Echo” fir MBI . (ERGR T — APt 2w, THLEAEAE “ N7, SR NAAT A dir & Jo i
HCRAm L gzt X . NS T T AT RO g B) i 2

OxFF (Reset) - Causes keyboard to enter "Reset"” mode. (See "Reset" section.)
OXFF (Reset)— 5| e B HEN “Reset” #ik. (WL “EA1” #5r.)

® OxFE (Resend) - This is used to indicate an error in reception. Keyboard responds by resending the last

scan code or command response sent to the host. However, OXFE is never sent in response to a "Resend"
command.

® OxFE (Resend)— M- T JURTERC T HH I IRV R 58 o BEEASE 1oy ooy B gl A2 7 A6 B i (04 i) iy 4 [l 2
5 FML. (H/E OXFE ZiAAEN “Resend” iy 4 I H] N i 4% A 3%

@® *0xFD (Set Key Type Make) - Allows the host to specify a key that is to send only make codes. This key
will not send break codes or typematic repeat. This key is specified by its set 3 scan code.

@ *0xFD (Set Key Type Make) — feVF EHLIRE ML B KGRI . XA ZBEAKIL I 5 s AT AT
HA . TRE R BRI e R =B

® *0xFC (Set Key Type Make/Break) - Similar to "Set Key Type Make", but both make codes and break
codes are enabled (typematic is disabled.)

@® *0xFC (Set Key Type Make/Break)— LT “Set Key Type Make”, WA MWL Z A GEN) (HLFT
WAEIE T,

@® *0xFB (Set Key Type Typematic) - Similar to previous two commands, except make and typematic is
enabled; break codes are disabled.

22 gt 22 W1 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

® *0xFB (Set Key Type Typematic) — LT {45 i %, EISFINLAT AL REMT, KT pE2E 1L,

@® *0xFA (Set All Keys Typematic/Make/Break) - Default setting. Make codes, break codes, and typematic
repeat enabled for all keys (except "Print Screen" key, which has no break code in sets 1 and 2.)

@ *0xFA (Set All Keys Typematic/Make/Break) — 4 WL . T A7 BERIEAD . Wil AIHLAT H S #AL AE (BR
7 “Print Screen” B, CAEH B ZEHEA WD

@® *0xF9 (Set All Keys Make) - Causes only make codes to be sent; break codes and typematic repeat are
disabled for all keys.

@ *0xF9 (Set All Keys Make)— JiT A7 Bl U ik s Wi RIHLET S 25 0L

@® *0xF8 (Set All Keys Make/Break) - Similar to previous two commands, except only typematic repeat is
disabled.

@ *0xF8 (Set All Keys Make/Break) — KA TP 45 a2, B 17 2 HUAT H B A5 1 4b,

@® *0xF7 (Set All Keys Typematic) - Similar to previous three commands, except only break codes are
disabled. Make codes and typematic repeat are enabled.

® *0xF7 (Set All Keys Typematic)— AL T 5 —=4cm 4, AW p 4R 1, @ FPLFT 2R,

@® O0xF6 (Set Default) - Load default typematic rate/delay (10.9cps / 500ms), key types (all keys
typematic/make/break), and scan code set (2).

@ 0xF6 (Set Default)— i A B IHLATH HK/AERT (10.9cps/500ms), 4TI (BT A7 445 A Al RENLET A
fu/irh), DLACE B4,

@® O0xF5 (Disable) - Keyboard stops scanning, loads default values (see "Set Default" command), and waits
further instructions.
® OxF5 (Disable)— B A5 IE41H, AR (B “Set Default” M4, SR —P4.
@® 0xF4 (Enable) - Re-enables keyboard after disabled using previous command.
@ 0xF4 (Enable)—7EH] E—4cin & 45 b B A, FOBE RERE AL
@® O0xF3 (Set Typematic Rate/Delay) - Host follows this command with one argument byte that defines the
typematic rate and delay as follows:
@® O0xF3 (Set Typematic Rate/Delay)— FHIAEIX 4 &)5 & Kk —AN P S ECK 8 XHLFT HH AT
I, BARS Xnrr:
Repeat Rate
Bits 0-4 Rate(cps) Bits 0-4 Rate(cps) Bits 0-4 Rate(cps) Bits 0-4 Rate(cps)
00h 2.0 08h 4.0 10h 8.0 18h 16.0
01lh 2.1 0% 4.3 11h 8.6 19h 17.1
02h 2.3 0Ah 4.6 12h 9.2 1Ah 18.5
03h 2.5 0Bh 5.0 13h 10.0 1Bh 20.0
04h 2.7 0Ch 5.5 14h 10.9 1Ch 21.8
05h 3.0 0Dh 6.0 15h 12.0 1Dh 24.0
06h 3.3 OEh 6.7 16h 13.3 1Eh 26.7
07h 3.7 OFh 7.5 17h 15.0 1Fh 30.0
Delay
Bits 5-6 Delay (seconds)
00b 0.25
01b 0.50
10b 0.75
11b 1.00

#
S
=
pad
B

I 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

® *0xF2 (Read ID) - The keyboard responds by sending a two-byte device ID of 0xAB, 0x83.

® *0xF2 (Read ID)— AL [FI N PIASF 5 1% % ID, 0xAB. 0x83.

@® *0xFO (Set Scan Code Set) - Host follows this command with one argument byte, that specifies which
scan code set the keyboard should use. This argument byte may be 0x01, 0x02, or 0x03 to select scan

code set 1, 2, or 3, respectively. You can get the current scan code set from the keyboard by sending this
command with 0x00 as the argument byte.

@ *0xFO (Set Scan Code Set)— EHAEXAir & G Ak — AN F RIS H, 2 A AR R AL .

ZHCFATALLZ 0x01. 0x02 8% 0x03 73 Bl P H i e 26—, 55 B ullh =& .. WURERA T

IEAEAE T At AR, U BAL A 0x00 ZHM A dr 2 BT,

0xEE (Echo) - The keyboard responds with "Echo" (0XEE).

OxEE (Echo)—###£H “Echo” (OXEE) [H[pV,

@® OxED (Set/Reset LEDs) - The host follows this command with one argument byte, that specifies the state
of the keyboard's Num Lock, Caps Lock, and Scroll Lock LEDs. This argument byte is defined as
follows:

® OxED (Set/Reset LEDs)— EHLIEA A2 7 BRE— NS4, TR/~ 8 4L - Num Lock, Caps Lock,
and Scroll Lock LED HPIRA e XANSHCF 9 115E XU h -

MSB LSB
Always 0 Always 0 Always 0 Always 0 Always 0 Caps Lock | Num Lock | Scroll
Lock

O "Scroll Lock" - Scroll Lock LED off(0)/on(1)
O "Num Lock" - Num Lock LED off(0)/on(1)
O "Caps Lock" - Caps Lock LED off(0)/on(1)

*QOriginally available in PS/2 keyboards only.
* SR A T PS/2 A

Emulation:

ik

Click here for keyboard/mouse routines. Source in MPASM for PIC microcontrollers.
s X H AT DU BB/ PR R o USARAS 2 FH PIC Tz il 4% 1) MPASM H 5 (1.

CGEHTE: PP ARG BA M 4 oD

The i8042 Keyboard Controller:
18042 G HI

Up to this point in the article, all information has been presented from a hardware point-of-view. However, if
you're writing low-level keyboard-related software for the host PC, you won't be communicating directly with
the keyboard. Instead, a keyboard controller provides an interface between the keyboard and the peripheral
bus. This controller takes care of all the signal-level and protocol details, as well as providing some
conversion, interpretation, and handling of scan codes and commands.

BRI, MR ROR BT 5 B D2 th o & W R IR4T 545 host PC 5 — /MK
1 55 SRR AR SC B, AR AN AN BE 42 R B 0 T o 1 A B P TR s A0 0 BN S 32 S e 2 R 3% 1
PEH as AME I T P (5 5 ZOM PSR n ™y, et 7SS WOREAI T 5 K i & AR .

5 24 I 24 TT 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

An Intel 8042/compatible microcontroller is used as the PC's keyboard controller. In modern computers, this
microcontroller is hidden within the motherboard's chipset, which integrates many controllers in a single
package. Nonetheless, this device is still there, and the keyboard controller is still commonly referred to as
"the 8042".

Intel 8042 HGHEA A= HIAHIE PC SEAL IR AS o AEILACHI VT NP X ez dil e 4 FEg) T A
M el BRSBTS TR Al . BRI, (HBEA IR,
SRR s — e “80427 SKig K.

Depending on the motherboard, the keyboard controller may operate in one of two modes: "AT-compatible"
mode, or "PS/2-compatible" mode. The latter is used if a PS/2 mouse is supported by the motherboard. If
this is the case, the 8042 acts as the keyboard controller and the mouse controller. The keyboard controller
auto-detects which mode it is to use according to how it's wired to the keyboard port.

MO T ERRAIANE, A S AT LA TAE T — “AT Sfiei” BlEk “Ps/2 Hea” #il.
REMCCHF PS/2 BbRmh TAEAE G — MR o FEIX IGO0, 8042 141 H A2 B 42 il 4 A SRl bR P28) 4
SREASE 27 TR 45 AR Al B 5 i 1) FRDE S 0 B SIS A AR AE AT AR

The 8042 contains the following registers:
8042 U5 T 4N (A A7 4«

A one-byte input buffer - contains byte read from keyboard; read-only
NPT NG PP IX — S SR RN

A one-byte output buffer - contains byte to-be-written to keyboard; write-only
AN e X — A E S R 1S

A one-byte status register - 8 status flags; read-only
—AFHHPRE T — 8 MRS IRE: Ak

A one-byte control register - 7 control flags; read/write

—ANFE ARG AR — T AN S

The first three registers (input, output, status) are directly accessible via ports 0x60 and 0x64. The last
register (control) is read using the "Read Command Byte" command, and written using the "Write Command
Byte" command. The following table shows how the peripheral ports are used to interface the 8042:
WA CaoN s RS v LA 0x60 T 0x64 Ui H ELEAFHL . 5)5 AN A fe s (Bl 22
] “Read Command Byte” fiy4&i%,] “Write Command Byte” #7425, [H &5 7 i fa]
T 8042 B2

Port Read/ Write Function Tife

0x60 Read Read Input Buffer AN ZE X
0x60 Write Write Output Buffer H 2R X
0x64 Read Read Status Register BORSATAA
0x64 Write Send Command RiLamL

Writing to port 0x64 doesn't write to any specific register, but sends a command for the 8042 to interpret. If
the command accepts a parameter, this parameter is sent to port 0x60. Likewise, any results returned by the
command may be read from port 0x60.
5 0x64 3 AL G N BUEfRFE I AFA7g T, RSB JOE Ar 2 47 8042, W R a4 — 24,
WIS HRATE 0x60 i 1o AR, fir 2 AR Bl 45K m] LA 0x60 i 15 H o

525 Tk 25 T 02-11-24 KA

PS/2 HiRk&H% #%: Adam Chapweske i¥: Roy Show

When describing the 8042, I may occasionally refer to its physical I/O pins. These pins are defined below:
FEFIR 8042 I, FRAB/RSHE S E W EE VO & 1, X8 e SCan k-

AT-compatible mode

Port 1 (Input Port): Port 2 (Output Port): Port 3 (Test Port):

Pin | Name | Function Pin | Name | Function Pin Name | Function

0 P10 Undefined 0 P20 System Reset 0 TO Keyboard Clock
1: Normal (Input)
0: Reset computer

1 P11 Undefined 1 P21 Gate A20 1 Tl Keyboard Data

(Input)

2 P12 Undefined 2 P22 Undefined 2 -- Undefined

3 P13 Undefined 3 P23 Undefined 3 -- Undefined

4 P14 External RAM 4 P24 Input Buffer Full 4 - Undefined

1: Enable external
RAM
0: Disable external

RAM

5 P15 Manufacturing Setting 5 P25 Output Buffer Empty 5 -- Undefined
1: Setting enabled
0: Setting disabled

6 P16 Display Type Switch 6 P26 Keyboard Clock 6 -- Undefined
1: Color display 1: Pull Clock low
0: Monochrome 0: High-Z

7 P17 Keyboard Inhibit | 7 P27 Keyboard Data: 7 -- Undefined
Switch 1: Pull Data low
1: Keyboard enabled 0: High-Z

0: Keyboard inhibited

PS/2-compatible mode

Port 1 (Input Port): Port 2 (Output Port): Port 3 (Test Port):
Pin | Name | Function Pin | Name | Function Pin Name | Function
0 P10 Keyboard Data 0 P20 System Reset 0 TO Keyboard Clock
(Input) 1: Normal (Input)
0: Reset computer
1 P11 Mouse Data 1 P21 Gate A20 1 T1 Mouse Clock
(Input) (Input)
2 P12 Undefined 2 P22 Mouse Data: 2 -- Undefined
1: Pull Data low
0: High-Z
3 P13 Undefined 3 P23 Mouse Clock: 3 -- Undefined

1: Pull Clock low

26 11k 26 TT 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

0: High-Z
4 P14 External RAM 4 P24 Keyboard IBF | 4 - Undefined
1: Enable external interrupt:
RAM 1: Assert IRQ 1
0: Disable external 0: De-assert IRQ 1
RAM
5 P15 Manufacturing Setting 5 P25 Mouse IBF interrupt: 5 -- Undefined
1: Setting enabled 1: Assert IRQ 12
0: Setting disabled 0: De-assert IRQ 12
6 P16 Display Type Switch 6 P26 Keyboard Clock 6 -- Undefined
1: Color display 1: Pull Clock low
0: Monochrome 0: High-Z
7 P17 Keyboard Inhibit | 7 P27 Keyboard Data: 7 -- Undefined
Switch 1: Pull Data low
1: Keyboard enabled 0: High-Z
0: Keyboard inhibited

(Note: Reading keyboard controller datasheets can be confusing--it will refer to the "input buffer" as the
"output buffer" and vice versa. This makes sense from the point-of-view of someone writing firmware for the
controller, but for somebody used to interfacing the controller, this can cause problems. Throughout this
document, I only refer to the "input buffer" as the one containing input from the keyboard, and the "output
buffer" as the one that contains output to be sent to the keyboard.)

QER: RS R T T RES IR AR, LR s 2l “HAZ2oh X7 24k “Hth X", k2
IRR o IXSEHR TR TR IR A, 2 NS5 R R, 32 A 2 i 1 o FEASSCH, JRPTERFIH)
“HMNGEIPIX T SRTBCE B AT AR N T, A SR AR R TBCR T Y Ik S B A S S
HUF: L)

Status Register:

The 8042's status flags are read from port 0x64. They contain error information, status information, and
indicate whether or not data is present in the input and output buffers. The flags are defined as follows:

8042 HPRAHRE M 0x64 b 32 H K BT E TRIHRME B R SR 22 0h X A 68
ffi7R . IR bR R LT

MSB LSB
AT-compatible mode: PERR RxTO TxTO INH A2 SYS IBF OBF
PS/2-compatible mode: | PERR TO MOBF | INH A2 SYS IBF OBF

@ OBF (Output Buffer Full) - Indicates when it's okay to write to output buffer.
0: Output buffer empty - Okay to write to port 0x60
1: Output buffer full - Don't write to port 0x60
@ IBF (Input Buffer Full) - Indicates when input is available in the input buffer.
0: Input buffer empty - No unread input at port 0x60
1: Input buffer full - New input can be read from port 0x60
@®SYS (System flag) - Post reads this to determine if power-on reset, or software reset.
5527 JUIL 27 T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

0: Power-up value - System is in power-on reset.

1: BAT code received - System has already beed initialized.

@ A2 (Address line A2) - Used internally by the keyboard controller

0: A2 =0 - Port 0x60 was last written to

1: A2 =1 - Port 0x64 was last written to

@ INH (Inhibit flag) - Indicates whether or not keyboard communication is inhibited.

0: Keyboard Clock = 0 - Keyboard is inhibited

1: Keyboard Clock = 1 - Keyboard is not inhibited

@ TxTO (Transmit Timeout) - Indicates keyboard isn't accepting input (kbd may not be plugged in).
0: No Error - Keyboard accepted the last byte written to it.

1: Timeout error - Keyboard didn't generate clock signals within 15 ms of "request-to-send".
@ RxTO (Receive Timeout) - Indicates keyboard didn't respond to a command (kbd probably broke)
0: No Error - Keyboard responded to last byte.

1: Timeout error - Keyboard didn't generate clock signals within 20 ms of command reception.
@®PERR (Parity Error) - Indicates communication error with keyboard (possibly noisy/loose connection)
0: No Error - Odd parity received and proper command response recieved.

1: Parity Error - Even parity received or OXFE received as command response.

@ MOBF (Mouse Output Buffer Full) - Similar to OBF, except for PS/2 mouse.

0: Output buffer empty - Okay to write to auxillary device's output buffer

1: Output buffer full - Don't write to port auxillary device's output buffer

@ TO (General Timout) - Indicates timeout during command write or response. (Same as TxTO + RxTO.)
0: No Error - Keyboard received and responded to last command.

1: Timeout Error - See TxTO and RxTO for more information.

@OBF (Mt 2o D) — Fo e 15l 5 ANt 22 v X

0: Hth 22 b X2 — 5 A F 0x60 i 1)K 2)

1 B G2k D — ANBES 21 0x60 i]

@IBF I AZZFDH) — FR7sat] LA A ZE P X R 32

0: HAZZITIX 2 — ANfig A\ 0x60 iy 1 152 A\ 4

L SN ZErb DG — AR B N 7, A UM 0x60 i 352

OSYS (RZGFrs) — Post BEHUXAMFRiCIE & 15 L B ALE A E AL,

0: EH—RGAT ERAKT.

1: BAT fRIE5E— RG & 56 T WIUHAL .

QA2 (Mg A2) — BEAAHI S N ERAET .

0: A2 =0—1Ix)i 5 A2 M 0x60 .

I A2 = 1—IJa 5 N[0 0x64

@INH (ZE 145 — FRaBEAE IR St

0: BEALIBh = 0— BRI AR L,

1 SR Bh = 1— @AW A L.

OTxTO CRIZHN) — FRRBEAE AT HZmMA (LB A A

0: JCHiR —HER W T B AN E .

L GBI HS—BERLAE 15ms () “THRAIE ™ INE] A A P I B 5

ORxTO CFEWGEIN) — iR/ BERL AR Y fir & (B W] BEZ A1)

0: JCHF R —BERININ T fefm — A7

1. GBI HT—BERLAE 20ms [y BB N A 7 BB E 5

@PERR (KEGHTR) — $R/SFIBEEMIEIHA # R CATRe THRBE E B 3 T).

0: JohiR — R T A A IF HAe R 1738 24 i fir & B

28 jik 28 UL 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
1 BREAS — Bl BB RS 56 BR & OXFE 15 4 iy & R N R T o

O MOBF (bR gz i) — KLT OBF (HAVEEE PS/2 fbF.

0: HrH X = — 5 RIY 4% 1t 2 b X)

s B 2 D3 — AN] LS 2148 Bh 15 2% () i th 92 0 DX 3 1] o

OTO (BN — FRRfEmA S A MmN A K (Rl TXTO + RXTO —F£)

0: TCEE R — BRI NN T i — 4 m 2o

1: 4 —2% TxTO Ml RXTO , R Z{E5 .

[EG: On my PC, the normal value of the 8042's "Status" register is 14h = 00010100b. This indicates
keyboard communication is not inhibited, and the 8042 has already completed its self-test ("BAT"). The
"Status" register is accessed by reading from port 64h ("IN AL, 64h")]

[oan: 7E3 PC L, 8042 & 2474 IIEH (42 14h=00010100b. XM 15t W] B AL 0 TR AT Bl 4%
1k, 8042 B4 T Ak (“BAT™). ARAZFArs 1T LLA 64h Ji L (“IN AL,64h”)]

Reading keyboard input:
BERERLHITIN -

When the 8042 recieves a valid scan code from the keyboard, it is converted to its set 1 equivalent. The
converted scan code is then placed in the input buffer, the IBF (Input Buffer Full) flag is set, and IRQ 1 is
asserted. Furthermore, when any byte is received from the keyboard, the 8042 inhibits further reception (by
pulling the "Clock" line low), so no other scan codes will be received until the input buffer is emptied.

2 8042 AW RIA R Y, S e — B I A 5 o B A TROCE A R A\ 2%
X, IBF CRAZZrT D) bR &, 74 IRQL. 1M H, Uui R A Hothok A BRI 717, 8042
Rl sE 2 1l GEHE “ PRI, XA A EE 2 13, — H R A S X s 2
Ak

If enabled, IRQ 1 will activate the keyboard driver, pointed to by interrupt vector 0x09. The driver reads the
scan code from port 0x60, which causes the 8042 to de-assert IRQ 1 and reset the IBF flag. The scan code is
then processed by the driver, which responds to special key combinations and updates an area of the system
RAM reserved for keyboard input.

AR WA RERT, IRQI R EURBE A IKEN LY, X2 R) 0x09 5 i) i . BXEDFEF A 0x60 i 11
B, XA EESRIR IRQL JEEAL IBF Ak, A AR RIR SN RE - A B, (o] WAy A o Fr) 201
A B AR G0 RAM R B 20 B4 N\ 1) DX L PR 0 45

If you don't want to patch into interrupt 0x09, you may poll the keyboard controller for input. This is
accomplished by disabling the 8042's IBF Interrupt and polling the IBF flag. This flag is set (1) when data is
available in the input buffer, and is cleared (0) when data is read from the input buffer. Reading the input
buffer is accomplished by reading from port 0x60, and the IBF flag is at port 0x64, bit 1. The following
assembly code illustrates this:

WMRARAITEAETWr 0x09 FFHLAAAN 17, AR AT LU B it 2t ek AN B . 1K 4% 1 8042 (1)
IBF P, 148 IBF ARSRSEIUA o Bl W RAES A ZEph X2 aT I, PRl e 1, W iR EdE
MEMAGE D A T bRt = EE 0. SR A ZZ0h Xl 12 0x60 3 I+ K #df , IBF AR (e 0x64
i VR 2R 1A o VG AR 2 1 B G

kbRead:
WaitLoop: in al, 64h ; Read Status byte

%529 midt 29 Tt 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

and al, 10b ; Test IBF flag (Status<1>)
jz WaitLoop ; Wait for IBF =1
in al, 60h ; Read input buffer
Writing to keyboard:
11881t G2 -

When you write to the 8042's output buffer (via port 0x60), the controller sets the OBF ("Output Buffer Full")
flag and processes the data. The 8042 will send this data to the keyboard and wait for a response. If the
keyboard does not accept or generate a response within a given amount of time, the appropriate timeout flag
will be set (see Status register definition for more info.) If an incorrect parity bit is read, the 8042 will send
the "Resend" (0XFE) command to the keyboard. If the keyboard continues to send erroneous bytes, the
"Parity Error" flag is set in the Status register. If no errors occur, the response byte is placed in the input
buffer, the IBF ("Input Buffer Full") flag is set, and IRQ 1 is activated, signaling the keyboard driver.

MRS HHE F 8042 (kg X (Gl 0x60 Ui 1), #HlH %S OBF (“Hirth 2P Xl ™) kI Ab
Kl . 8042 K AR XA BB AL IS — AN o G BB AT BBl 7 R 1N] A AT BT
TN I AR S 2 e e B (RS A7 3 0 SCRIRMGF A5 50 WURBE S AR AR A R 10 71
RATFAF s L I bRt e BAL . R RHR A, N AT B A gz X, IBF

CHNZEP D) ARBHCEAL, IRQI MHIE, KA5 548 A KB FERE .

The following assembly code shows how to write to the output buffer. (Remember, after you write to the
output buffer, you should use int 9h or poll port 64h to get the keyboard's response.)
NG A G I AT S N B G X GRAE, AEURTE R 2 b DXh N e, AR 2B v
Oh 5 HE) 64h i [RIRAFHERL A0 .)

kbWrite:

WaitLoop: in al, 64h ; Read Status byte
and al, 01b ; Test OBF flag (Status<0>)
jnz WaitLoop ; Wait for OBF =0
out 60h, cl ; Write data to output buffer

Keyboard Controller Commands:
B 72 a5 iy S

Commands are sent to the keyboard controller by writing to port 0x64. Command parameters are written to
port 0x60 after teh command is sent. Results are returned on port 0x60. Always test the OBF ("Output

Buffer Full") flag before writing commands or parameters to the 8042.
R S BB S 0x64 B 1o (A & RILIR , A5 F) 0x60 31 . 45 HBIZ A F] 0x60
i e AR5 a2 S H R 8042 Z i AL ZEA OBF (“HaTtH 2 DXl 7D bakiir] o

@®0x20 (Read Command Byte) - Returns command byte. (See "Write Command Byte" below).

@ 0x60 (Write Command Byte) - Stores parameter as command byte. Command byte defined as follows:
@0x20 (LT 1) —REar-S T, (2% M “Sare7 W,

@0x60 (G 71 —fAHSHA a7 7 e Xk

MSB LSB
30 sk 30 1T 02-11-24 KA

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

AT-compatible mode: --

XLAT

PC

EN

OVR

SYS

INT

PS/2-compatible mode: | --

XLAT

_EN2

_EN

SYS

INT2

INT

@ INT (Input Buffer Full Interrupt) - When set, IRQ 1 is generated when data is available in the input

buffer.

0: IBF Interrupt Disabled - You must poll STATUS<IBF> to read input.

1: IBF Interrupt Enabled - Keyboard driver at software int 0x09 handles input.

®SYS (System Flag) - Used to manually set/clear SYS flag in Status register.

0: Power-on value - Tells POST to perform power-on tests/initialization.

1: BAT code received - Tells POST to perform "warm boot" tests/initiailization.
@ OVR (Inhibit Override) - Overrides keyboard's "inhibit" switch on older motherboards.

0: Inhibit switch enabled - Keyboard inhibited if pin P17 is high.

1: Inhibit switch disabled - Keyboard not inhibited even if P17 = high.

€ EN (Disable keyboard) - Disables/enables keyboard interface.

0: Enable - Keyboard interface enabled.

1: Disable - All keyboard communication is disabled.

@ PC ("PC Mode") - ?7??Enables keyboard interface somehow???

0: Disable - ???
1: Enable - ???

@ XLAT (Translate Scan Codes) - Enables/disables translation to set 1 scan codes.
0: Translation disabled - Data appears at input buffer exactly as read from keyboard

1: Translation enabled - Scan codes translated to set 1 before put in input buffer

@ INT2 (Mouse Input Buffer Full Interrupt) - When set, IRQ 12 is generated when mouse dat

available.

0: Auxillary IBF Interrupt Disabled -
1: Auxillary IBF Interrupt Enabled -

€ EN2 (Disable Mouse) - Disables/enables mouse interface.

0: Enable - Auxillary PS/2 device interface enabled

1: Disable - Auxillary PS/2 device interface disabled
®INT i AZeph DO D) — W RBCE T, A A G2 DA A B8k v 42 IRQ1.
0: IBF FPIrZE il — IR A ZRFE WPRAS F5 A7 4% (I <IBF> R MU

1: IBF WL g —7E b b 0x19 tPfr 42 0k Sh Ak A7 SN .

OSYS (RGihras) —H T Tah BB FRIR A A7 45 1 SYS bris.
0: LEH— 1§ POST $AT FHl B S ATUR 1L o
1: BAT U4] — 5 F POST AT “HuUnzh” Ml kliatl.

®OVR (MR L) —FEREEE Tk b 2B “ 257 TPk,

0: ZEHIJFRAERE— W2k P17 Ay A B it

1: 25 oes L — A SWEER, E2T P17 A&,

& _EN (ZRbgEal) —ZAb/AdRem g,

0: fifE—EAL R AR,

e A8k — Py SR A AR L

®PC (“PC F:”) —2007E AP0 A GE A 4% 10222

0: 2&1F—927?
1: ffife—27?

(BT IR A AR AE H AN R 2 W] TAER,)

AR AR ARG .)
O XLAT (BHEEHIHIS) — A RE/A% IR PR s — B .

F3 31w

a

02-11-24 KA

is

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

0: FHEEAA 1L — MEERL I N A NN X .

1: BHPEA AR — FI R AL TN BT N G2 X 2 1 SE Bl B — B2 X A

OINT2 CRUPRHIANZE PRI W) — M3 E e, W R bR A 200 7= 42 IRQ 12,
0: #fiBh IBF HH b2k F—

1: %fiBh IBF 1 K —

€ EN2 CZEIERbR) —25AERE R O,

0: fHRE—HIK PS/2 Va3 WA .

1: 250 —HiBh) PS/2 WA i gkl

@ 20x90-0x9F (Write to output port) - Writes command's lower nibble to lower nibble of output port (see
Output Port definition.)

@®?0xA1 (Get version number) - Returns firmware version number.

@ ?0xA4 (Get password) - Returns 0xFA if password exists; otherwise, 0xF1.

@®?0xA5 (Set password) - Set the new password by sending a null-terminated string of scan codes as this
command's parameter.

@ ?0xA6 (Check password) - Compares keyboard input with current password.

@®0xA7 (Disable mouse interface) - PS/2 mode only. Similar to "Disable keyboard interface" (0xAD)
command.

@ 0xA8 (Enable mouse interface) - PS/2 mode only. Similar to "Enable keyboard interface" (0XxAE)
command.

@®0xA9 (Mouse interface test) - Returns 0x00 if okay, 0x01 if Clock line stuck low, 0x02 if clock line stuck
high, 0x03 if data line stuck low, and 0x04 if data line stuck high.

@®0xAA (Controller self-test) - Returns 0x55 if okay.

@ 0xAB (Keyboard interface test) - Returns 0x00 if okay, 0x01 if Clock line stuck low, 0x02 if clock line stuck
high, 0x03 if data line stuck low, and 0x04 if data line stuck high.

@®0xAD (Disable keyboard interface) - Sets bit 4 of command byte and disables all communication with
keyboard.

@®0xAE (Enable keyboard interface) - Clears bit 4 of command byte and re-enables communication with
keyboard.

@ 0xAF (Get version)

@ 0xCO0 (Read input port) - Returns values on input port (see Input Port definition.)

@ 0xC1 (Copy input port LSn) - PS/2 mode only. Copy input port's low nibble to Status register (see Input Port
definition)

@®0xC2 (Copy input port MSn) - PS/2 mode only. Copy input port's high nibble to Status register (see Input
Port definition.)

@ 0xDO0 (Read output port) - Returns values on output port (see Output Port definition.)

@ 0xD1 (Write output port) - Write parameter to output port (see Output Port definition.)

@ 0xD2 (Write keyboard buffer) - Parameter written to input buffer as if received from keyboard.

@ 0xD3 (Write mouse buffer) - Parameter written to input buffer as if received from mouse.

@ 0xD4 (Write mouse Device) - Sends parameter to the auxillary PS/2 device.

@ 0xE0 (Read test port) - Returns values on test port (see Test Port definition.)

@ 0xF0-0xFF (Pulse output port) - Pulses command's lower nibble onto lower nibble of output port (see
Output Port definition.)

@20x90-0x9F (‘5 4yt i 1) — 5 aiw-2 AR 4 A7 20 i A0 AIK 4 R COL T H 3 1A 5E SO
@20xAl GRIFRAS D — iR [nl [l {1 (1 A 5

@20xA4 GRIFERD) — WA A7 AENIR [F] OXFA, {5 U3R[A] OxF1.,

F32 k320 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

@0xAS CREHM) —WEHNEM, ik —A DL PR 45 o) 0 7 B AE a2 1S4
@0xA6 (LR — A NI /T 2 A AH LR

O0xA7 (ZEILRAREID — (T PS2 B, KEIT “2R 13817 (0xAD) 4.

@ 0xA8 (FREMAFRIZEID — (T PS2 B, HBEIT “fFResAE N7 (0xAE) 4.

O 0xA9 CRUAREE IR —F7 ik R [F] 0x00, BB AR FHRAAZ IR] 0x01, 47 I Bh ek R =
AZNR] 0x02, #5504 2 AR FFARAS AR IR [F] 0x03, #5 H0H 26 O =y AR IR (1] 0x04

@ O0xAA (Fifilgs KD — 47 Th IR [H] 0x55.

@ 0xAB CHEALH IR —FF it R [F] 0x00, 25 B AR AR) 4 0x01, 57k (fFF iy A AR
TR 0x02, HHHE AR FFICAZE N 0x03, #7BE L R AR N 0x04.

@ 0xAD (ZEILEEAIED) —WE A FE I 4 (1 JF4% E%ﬁ%%ﬂWMLﬂ

O O0xAE (fFREREALIEID) —IGFRaT 7R 4 A JF Bl ae S s iE

@ 0xAF CGRAFhRAD

@0xCO (i N 1) — R [Fl% A s AP (A8 (S 28 A\ R E SO o

@0xC1 (#& DU A i 1K) LSn) — AT PS/2 #ixle #5 Ul AN L AR DU AL BPIRAS B A7 s (S F A

ity 15 30
@0xC2 (#5 Ul N 11 MSn) — A+ PS/2 15X, #5 Ul N ¥ s DU BPIR S Z 788 (S HB A
Uit 158 X o

@0xDO iz thi 1) — 3R [l o I {EL (22840 i 1 30

@0xD1 (Shthivn) —5SHE v 1 (S5 i 1 E 3O,

O0xD2 (SHEEZEM X)) — LS HE BN DOt 52 W R R —

@0xD3 (5 Arent X)) —HSHE B A Gerh st Bt A AR B B —HF

@0xD4 (5 RbRBLE) —RIESH M PS/2 Wik,

@O0xE0 (B 1) — R [1A (2250 R E 3O,

@ OxF0-OxFF Clbk iy th 3 11 — (e kb T L i< (AR DU A7 280 i g 10 AR DU A7 (228l S g 1152 300

Modern Keyboard Controllers:
HACER i 7257755 -

So far, I've only discussed the 8042 keyboard controller. Although modern keyboard controllers remain
compatible with the original device, compatibility is their only requirement (and their goal.)

FIHACALE, TS T 8042 HEALIEHIA: . EARDUCHI BRI ds OREF T AR A6 2 ISR, (H3f
LA THE— 7K CRIHFR) .

My motherboard's keyboard controller is a great example of this. I connected a microcontroller+LCD in
parallel to my keyboard to see what data is sent by the keyboard controller. At power-up, the keyboard
controller sent the "Set LED state" command to turn off all LEDs, then reads the keyboard's ID. When I tried
writing data to the output buffer, I found the keyboard controller only forwards the "Set LED state" command
and "Set Typematic Rate/Delay" command. It does not allow any other commands to be sent to the keyboard.
However, it does emulate the keyboard's response by placing "acknowledge" (0xFA) in the input buffer when
appropriate (or OXEE in response to the "Echo" command.) Furthermore, if the keyboard sends it an
erroneous byte, the keyboard controller takes care of error handling (sends the "Retry" command; if byte still
erroneous; sends error code to keyboard and places error code in input buffer.)

T AR LB AR AL AN E A . IRAE IR 2 LCD IR IR A B A LR s A
PRI AL TR . S, SRS AOX T “BUE LEDIRA” KM T T LED, 4RJ5 L
SR ID. M3 SEGE R 22 P IX, FAHBE R PRI U R T “BUE LED IR el “ ik
FENHTHCRAE " 6o EARVHEM AR AAE A . H)E, B NHe i icE “ g 2

F33 330 02-11-24 KA

PS2 RS #%: Adam Chapweske i¥: Roy Show
B N Z P IX KA BLEERL R ORI OXEE RIS, “Echo” y4). BhAh, WSEEE A% T — AR 7,
SRR A AR AR AU AR “Retry” s WIARARJSIRZET1; AR E oAU a5 S A IR
A IBANSIALE XD

Once again, keep in mind chipset designers are more interested in compatibility than standardization.

PR AR R AL BT 20 AR LR AE A Dl

Initialization:

Bisade:

The following is the communication between my computer and keyboard when it boots-up. I beleive the first
three commands were initiated by the keyboad controller, the next command (which enables Num lock LED)
was sent by the BIOS, then the rest of the commands were sent my the OS (Win98SE). Remember, these
results are specific to my computer, but it should give you a general idea as to what happens at startup.

W RE ARG R A AR AR BV U B B 2 18], AT EHLR B . BAHAE k= A dr 2 e T an A B A 2
a%, Ja—4crd (fffiE Numlock LED) 2 1 BIOS Ak, N K42 hIkH) OS (Win98SE) &
L. R, ERIEELEXAERE N, B IR IR A BRI, SRR R S A
THa.

Keyboard: AA Self-test passed ;Keyboard controller init
Host: ED Set/Reset Status Indicators

Keyboard: FA Acknowledge

Host: 00 Turn off all LEDs

Keyboard: FA Acknowledge

Host: F2 Read ID

Keyboard: FA Acknowledge

Keyboard: AB First byte of ID

Host: ED Set/Reset Status Indicators ;BIOS init
Keyboard: FA Acknowledge

Host: 02 Turn on Num Lock LED

Keyboard: FA Acknowledge

Host: F3 Set Typematic Rate/Delay ;Windows init
Keyboard: FA Acknowledge

Host: 20 500 ms/ 30.0 reports/sec

Keyboard: FA Acknowledge

Host: F4 Enable

Keyboard: FA Acknowledge

Host: F3 Set Typematic Rate/delay

Keyboard: FA Acknowledge

Host: 00 250 ms/30.0 reports/sec

Keyboard: FA Acknowledge

Other Sources / References:

HA B /Z7%

Adam's micro-Resources Home - This site's homepage.

5 34 T3k 34 7T 02-11-24 KA

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

Keyboard Scan Codes - My collection of scan code sets, verified in hardware.

PS/2 Mouse/Keyboard Protocol - Protocol used by AT and PS/2 keyboards.
Keyboard Code/Projects - My keyboard projects and source code.

National Semiconductor - "Super I/O" chipset datasheets.

IBM Archives - Non-technical historical information.
Samtech, Holtech - Keyboard encoder datasheets.
Sci.Electronics.Repair - PC Keyboard FAQ.

Adam Chapweske's Homepage - Information about me.

Email me - Questions/comments?

&
(9%
W
=
Pz
(9%
W
=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
F=F PS2 RN

This document is under construction... I'll post more information as I have time...

Electrical Interface / Protocol:

B /ML

The PS/2 mouse uses the same protocol as the PS/2 (AT) keyboard. This standard originally appeared in the
IBM technical reference manual, but I am not aware of any current official publication of this standard.
However, you may click here for the (detailed) information I have gathered about that protocol.

PS/2 BUAREHIAN PS/2 B — AR P, XA FrtfEiA) HIUAE IBM 50K 2% T AL, (HBEIFANKIIE 207
KPR IAERERTE 730 AR, AT P e I B RAG BOBCER 1K) 5C T 1X A B 4715

GEHE: RGET, AT 0

Inputs, Resolution, and Scaling:

N HPERRGE LA -

The standard PS/2 mouse supports the following inputs: X (right/left) movement, Y (up/down) movement, left
button, middle button, and right button. The mouse reads these inputs at a regular freqency and updates various
counters and flags to reflect movement and button states. There are many PS/2 pointing devices that have
additional inputs and may report data differently than described in this document. One popular extension I
cover later in this document is the Microsoft Intellimouse, which includes support for the standard inputs as
well as a scrolling wheel and two additional buttons.

PRAER) PS/2 BUARSCHF PIEIMIRIAN: X (24 Ak, Y CEh) fids, Ao, PRAAHR. AR
[P PRI AR 1 RO LAy AT SR AN R AT 0%, AR R AR ic H S R A SRR . IR 2 PS/2 JE
A% A BN B AN T LU AN [R] A SR (8 . — AN WAT I 78 R e S0 T 4
Microsoft [¥] Intellimouse, ‘& B SCHFARHERM A AR SCHFERAE P /> B In e e B

The standard mouse has two counters that keep track of movement: the X-movement counter and the
Y-movement counter. These are 9-bit 2's complement values and each has an associated overflow flag.
Their contents, along with the state of the three mouse buttons, are sent to the host in the form of a 3-byte
movement data packet (as described in the next section.) The movement counters represent the amount of
movement that has occurred since the last movment data packet was sent to the host.

PRAERT R P B R A O ERER . X AR TH B A Y BV H G . AR 9 A2 2 BEAMT
I HARA Vs H A AR DR e HEFRAS o E AT A 2] = A B H L RS — i L= i sh it
ARG BN R I — 3870 AT & N — A B b EALUS, g E
KA

When the mouse reads its inputs, it records the current state of its buttons, then checks for movement. If
movement has occurred, it increments (for +X or +Y movement) or decrements (for -X or -Y movement) its X
and/or Y movement counters. If either of the counters has overflowed, it sets the appropriate overflow flag.

1 SR EEECE RN B AGE, EC SRAER A HDIRES, RS R AR . IR R, e O IE
Rike) B> OARIRE) X A/ Y LR TS AOME . WRA — DTGt 1, i B AR L A8 H

PR o

b
(98
=N
=
P
(98
=N
=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

The parameter that determines the amount by which the movement counters are incremented/decremented is
the resolution. The default resolution is 4 counts/mm and the host may change that value using the "Set
Resolution" (0xE8) command.

PR NLAS VH B A S A () S JO0M 0 . SR I 8 4 M THECR /20K, BN BT “iE oy
R (0xE8) i ALK MH .

There is a parameter that does not effect the movement counters, but does effect the reported(1) value of these
counters. This parameter is scaling. By default, the mouse uses 1:1 scaling, which has no effect on the
reported mouse movement. However, the host may select 1:2 scaling by sending the "Set Scaling 2:1" (0xE7)
command. If 2:1 scaling is enabled, the mouse will apply the following algorithm to the counters before
sending their contents to the host:

AN SEAZRA B B A, AHZ X B R S BB ovr v Do EADSHUE AL
Bile BAETEOL N, WASEH] 1 1 LB, PSR 1 BUPR LA B S . (O EHLAT DA “ A L
2: 17 (0xE7) fp ik 2: 1 Wepl. WREHT 20 1], BbRTEREERS R W v EEE
A A A

Movement Counter Reported Movement
0 0

1 1

2 1

3 3

4 6

5 9

N>5 2*N

Movement Data Packet:

KB E IR

The standard PS/2 mouse sends movement (and button) information to the host using the following 3-byte
packet (4):
BRUER PS/2 bR A A AL # RS B2 TR A R i 3 -5 Bedla i 20 oo -

Bit 7 Bit 6 Bit5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0
Byte 1 Y overflow ‘ X overflow | Y sign bit ‘ X sign bit ‘ Always 1 ‘ Middle Btn | Right Btn Left Btn
Byte 2 X Movement
Byte 3 Y Movement

The movement counters are 9-bit 2's complement integers, where the most significant bit appears as a sign bit
in Byte 1 of the movement data packet. These counters are updated when the mouse reads its input and finds
movement has occurred. Their value is the amount of movement that has occurred since the last movement
data packet was sent to the host (ie, after a packet is sent to the host, the movement counters are reset.) The
range of values that can be expressed by the movement counters is -255 to +255. If this range is exceeded, the
appropriate overflow bit is set and the counter is not incremented/decremented until it is reset.

R UHE L — A 9 (L 2 AORMYEEEL, S m LA 5 At IUAE LR Bl B A 2 — A o L, Tt
TGRS AE BUPR BE U N\ AT 2% I ST« XA B IR e — BB A Bl 00 25 AL A2 A% (1) 2
i (Rg)n — kB RGIENG, BT EE R AL . AR T v R s B A i il -255 #4255,

5537 JIL 37 0T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

WSO TV, AN R AR R, I HAE AT, TR AN

As I mentioned earlier, the movement counters are reset whenever a movement data packet is successfully sent
to the host. They are also reset after the mouse receives any command from the host other than the "Resend"
(0OxFE) command.

IEAFRAT I $E S 1), — B RS Bl G D A ik 45 0L, AR TR s s A7 o [T SRR AE R LA
7 “Resend” (OXFE) fir @AMl ar &, @B AL,

Modes of Operation:
B

Data reporting is handled according to the mode in which the mouse is operating. There are four standard
modes of operation:

AR bR AT ARk AL R Bt it o A7 DU BAR v A A A2

@ Reset - The mouse enters Reset mode at power-up or after receiving the "Reset" (0xFF) command.

@ Stream - This is the default mode (after Reset finishes executing) and is the mode in which most software
uses the mouse. If the host has previously set the mouse to Remote mode, it may re-enter Stream mode by
sending the "Set Stream Mode" (0XxEA) command to the mouse.

@ Remote - Remote mode is useful in some situations and may be entered by sending the "Set Remote Mode"
(0xF0) command to the mouse.

@ Wrap - This mode isn't particularly useful except for testing the connection between the mouse and its host.
Wrap mode may be entered by sending the "Set Wrap Mode" (OxEE) command to the mouse. To exit Wrap
mode, the host must issue the "Reset" (0xFF) command or "Reset Wrap Mode" (0XEC) command. If the
"Reset" (0xFF) command is recieved, the mouse will enter Reset mode. If the "Reset Wrap Mode" (0xEC)
command is received, the mouse will enter the mode it was in prior to Wrap Mode.

@ Reset— FlbrrE LB R “Reset” (OxFF) fir 4 i kA Reset fizll,

@ Stream — IX 2B E B (7E Reset HUATTEHGD, W2 ZHURAAE] BRI, A SR RS T i
PR E 2T Remote £30, 8 AT LK I% “Set Stream Mode” (0XEA) iy 225 b ik BlAR BB UE N Stream
e

@ Remote — 7E R LU L T Remote #AIRA], ATLUE L KIE “Set Remote Mode” (0xFO) iy 213k Ao
@ Wrap— 5% 1 4 P BRI e 1 ENLZ W) 34, XA 2Rl AT] . Wrap A5ECAT LUE i A
1% “Set Wrap Mode” (OxEE) fir 445 ilbn Rt N, ZHRH Wrap £, FHLLIUKAT “Reset” (OXxFF)
2 “Reset Wrap Mode” (OxEC) fiv4. U4 “Reset” (OxFF) U E] T, RARKEZEAN Reset £,
SRR 2 “Reset Wrap Mode” (0xEC) fin4>, WAREREA Wrap BLCHT 1AL,

(Note: The mouse may also enter "extended" modes of operation, as described later in this document.
However, this is not a feature of the standard PS/2 mouse.)

GERE: BURFEIFERTDLEAN “extended” #AFRL, IEWASSHPTA. HEZ&, XAZIRUE PS/2 bR
FFAIE.D

Reset Mode:
Reset R :

The mouse enters reset mode at power-on or in response to the "Reset" (0xFF) command. After entring this
mode, the mouse performs a diagnostic self-test referred to as BAT (Basic Assurance Test) and sets the

38 jit 38 UL 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

follwing default values:
BUPRTE b LS NS “Reset” (OxFF) fr 2 atiE N reset B dENIXAMRA)T, BUARRAT R AT S
(K BAT (HEALRUENNRD —FEA) BRI BEE W T A8 e -

@ Sample Rate - 100 samples/sec
@ Resolution - 4 counts/mm

@ Scaling - 1:1

@ Data Reporting Disabled

@ K HEIH % — 100 SRAY 2T/FD

@ iR — 4 NTHUE =K

@ Zi s b —1:1

@ K ddi Ak

It then sends a BAT completion code of either OxAA (BAT successful) or 0xFC (Error). If the host receives a
response other than 0xAA, it may cycle the mouse's power supply, causing the mouse to reset and re-execute
its BAT.

SRJG R I% BAT SEIAS, XAMRIGAE OxAA (BAT &) /2 0xFC (HiR). WRENIE] T A
OxAA R[N, BRI E B 4 AR L, IXRER S DR BlAR AL IF BB $1AT BAT.

Following the BAT completion code (0xAA or 0xFC), the mouse sends its device ID of 0x00. This
distinguishes it from a keyboard, or a mouse in an extended mode. I have read documents saything the host is
not supposed to transmit any data until it receives a device ID. However I've found that some BIOS's will
send the "Reset" (0xFF) command immediately following the OxAA received after a power-on reset.

A BAT 58 /8fUh (0xAA 5L OXFC) [RJmil, AR AR E 3% 1D 0x00, IS ID FISK D5 e 2 B
RO SEAE T A A bR . BRSO3, EHEBMCE R A ID BT A BUE SJORAETH
HR A HAT L BIOS 7 LA I E] 0XAA 57K 3% “Reset” (0xFF) fird.

After the mouse has sent its device ID to the host, it will enter Stream Mode. Note that one of the default
values set by the mouse is "Data Reporting Disabled". This means the mouse will not send any movement
data packets to the host until the "Enable Data Reporting" (0xF4) command is received.

BUbR R I% H O % ID 45 EMLE, Btk N T Stream X, 8 AR BEE 10— A BUEE2 2 “ Bl
A AL X WA BARE B R “ A RERIE IR 7 (OxF4) T4 Z i A2 RARATAT A7 % 28 £
5 EML.

Stream Mode:

Stream &R, :

In stream mode, the mouse sends movement data when it detects movement or a change in state of one or more
mouse buttons. The maximum rate at which this data reporting may occur is known as the sample rate. This
parameter ranges from 10 samples/sec to 200 samples/sec. Its default value is 100 samples/sec and the host
may change that value by using the "Set Sample Rate" (0xF3) command. Stream mode is the default mode of
operation.

£ Stream B, — HURURRALIN SIS ORI A s A RS APIRASSCE T, AR R B 2 0.
i s R KA RFEE R . SHIITEEN 10 RS/ E] 200 KAF R/ . EASHI 6k
BAEAL 100 SRFERU/FY, EHUATAA] “BEERFFH A" (0xF3) iy RIS E . Stream B AR KB4
s

%539 it 39 i 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

Remote Mode:
Remote 3 :

In this mode, the mouse reads its inputs and updates its counters/flags at the current sampling rate, but it only
notifies the host of movement (and change in button state) when that information is requested by the host. The
host does this by issuing the "Read Data" (0xEB) command. After receiveing this command, the mouse will
send a movement data packet, and reset its movement counters.

FEXAMBEET S Bl DA 2 i AR SR AR A3 U A\ T B3 & AT s bR A, (E 8 I UE BRI SR B 1)
A 28 AU (RHLBRIRES). ENLIE T “38ds 7 (0xEBD & KIRAGHHE . A EIm<)n
SR A I AL B 0 I AL & AL A T s

Wrap Mode:
Wrap 3

This is an "echoing" mode in which every byte received by the mouse is sent back to the host. Even if the byte
represents a valid command, the mouse will not respond to that command--it will only echo that byte back to
the host. There are two exceptions to this: the "Reset" (0xFF) command and "Reset Wrap Mode" (0xEC)
command. The mouse treats these as valid commands and does not echo them back to the host.

B —A “InlE 7 B, BRI R P RSB M L. BRI — MRS, AR
AN I S A — & H AR AN AL WL (HZ AP AMEISE: “Reset” (0xfD fir 4 F1 “Reset Wrap
Mode” (0XEC) fir% o BUARIANIZP 4 i@t — A2 fir & IF HA S FHE e 2 L.

Intellimouse Extensions:

Intellimouse ¥ &

A popular extension to the standard PS/2 mouse is the Microsoft Intellimouse. This includes support for a
total of five mouse buttons and three axises of movement (right-left, up-down, and a scrolling wheel). These
additional features require the use of a 4-byte movement data packet rather than the standard 3-byte packet.
Since standard PS/2 mouse drivers cannot recognize this packet format, the Microsoft Intellimouse is required
to operate exactly like a standard PS/2 mouse unless it knows the drivers support the extended packet format.
This way, if a Microsoft Intellimouse is used on a computer which only supports the standard PS/2 mouse, the
Microsoft Intellimouse will still function, except for its scrolling wheel and 4th and 5th buttons.

XTARHER PS/2 BRI —ANIRAT IIH 2 SR 1) Intellimouse o & BLAE 32 H5 TLAS RS S SR =AM S 4l (22
Ay ERANRE . XSS IR AL SRAE I 4 A AR Bl G AN AR e 3 . U ARE PS/2 B
PROR SN AN PUIE AN B RS 20, IR TR 1) Intellimouse B3R 4% 34 BEFRUE PS/2 FbR KERAE, BREE
HIE IR BN AR T SRR e kg . AR Intellimouse HT-— 65 HUSCREARAE PS/2 BRIV EAL,
ERRIEHINRER), FURREEAS 4. 5 MEBAE

The Microsoft Intellimouse operates just like a standard PS/2 mouse (ie, it uses a 3-byte movement data packet,
responds to all commands in the same way as a standard PS/2 mouse, and reports a device ID of 0x00.) To
enter scrolling wheel mode, the host sends the following command sequence:

TR Intellimouse TAFKZARMER PS/2 bR (Rmhad, M) 3 i ddatl, s PS/2 WAs
—FERIN T A 4, %% ID0X00) . T NIRFEBIA, TN LALLM N a2 741

Set sample rate 200

b
EAN
S
=
P
AN
S
=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

Set sample rate 100
Set sample rate 80

The host then issues the "Get device ID" command (0xF2) and waits for a response. If a standard PS/2
mouse (ie, non-Intellimouse) is attached, it will respond with a device ID of 0x00. In this case, the host will
recognize the fact that the mouse does have a scrolling wheel and will continue to treat it as a standard PS/2
mouse. However, if a Microsoft Intellimouse is attached, it will respond with an ID of 0x03. This tells the
host that the attached pointing device has a scrolling wheel and the host will then expect the mouse to use the
following 4-byte movement data packet:

TR G N AZRA “3RG e ID” e (0xF2) JFAEAFRIN, WR 22t 2 bndE PS2 Blbr (F
Intellimouse), ‘B[R4 IDOx00. fEXFHELL T, EHLBIFFA L SLFRIZA BARBA RIS IF A8 &4
VERARE PS/2 bR (HE, WA Z2%En AT Intellimouse, “E/IR[FIM ID 42 0x03. X5 Uk EHLEE
BIE R AR e, I H BN BARE] 4 71 (AL 2 .-

Bit7 Bit 6 Bit 5 Bit4 Bit3 Bit2 Bit 1 Bit0
Byte 1 Y overflow ‘ X overflow ‘ Y sign bit | X sign bit ‘ Always 1 ‘ Middle Btn | Right Btn Left Btn
Byte 2 X Movement
Byte 3 Y Movement
Byte 4 Z Movement

Z Movement is a 2's complement number that represents the scrolling wheel's movement since the last data
report. Valid values are in the range of -8 to +7. This means the number is actually represented only by the
least significant four bits; the upper four bits act only as sign extension bits.

Z AR 2 HIAME R TR RS H_EIREEAR TS LR IIALRS o A BB RIVEFIAE-8 247, IX R B S br
SAARMYAT = A A ERT 5 e dir.

To enter scrolling wheel + 5 button mode, the host sends the following command sequence:

TERENRES+S5 R, EHVERE T a2 41

Set sample rate 200
Set sample rate 200
Set sample rate 80

The host then issues the "Get device ID" command (0xF2) and waits for a response. A Microsoft
Intellimouse will respond with a device ID of 0x04, then use the following 4-byte movement data packet:
FHEE R AT “HRAF 845 ID” d % (0xF2) FFAERF[RIN o K Intellimouse] 0x04 IXFE £ ID W%,
I BAF QR0 4 AR i A

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Byte | | Yoverflow | Xoverflow | Ysignbit | Xsignbit | Always1 | Middle Bin | Right Bm | Left Bm
Byte 2 X Movement
Byte 3 Y Movement
Byte4 | Always0 | Always0 | swBm | 4mBm | 2z | 2z [oz | 20

Z0-Z3 is a 2's complement number which represents the amount of movement that has occurred since the
last data report. Valid values range from -8 to +7.
4th Btn: 1 = 4th mouse button is pressed; 0 = 4th mouse button is not pressed.

5th Btn: 1 = 5th mouse button is pressed; 0 = 5th mouse button is not pressed.
5 41 AL 41 7T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
Z0-Z3 72 2 WIAME 3 320m N OB i URIR B RO R 5, A R0 -8 21+7,
Bat: 1=HARILP T =50 4 HEBAL T
HSHE: 1= SBILE T 0=50 S BB,

You may have seen mice with two scrolling wheels--one vertical and the other horizontal. These mice use the
Microsoft Intellimouse data packet format as described above. If the vertical wheel is scrolled upward, the
Z-counter is incremented by one and if that wheel is scrolled down, the Z-counter is decremented by one.
This is normal operation for a scrolling wheel. However, if the horizontal wheel is scrolled right, the
Z-counter is incremented by two and if it is scrolled left, the Z-counter is decremented by two. This seems
like an odd way to implement the second scrolling wheel, but it works since the placement of the two wheels
make it impossible to use both of them at the same time (and if you try to trick the software and use both at the
same time, it will ignore the horizontal wheel.)

PRAVE A MR FE I AR : — SRR ELAY SO o 2P PR AE L T 4R 10K Intellimouse
Hn s e WUREE MR W LIRS, Z s n 1 RN 0 NRS), Z W EER I 1. X
R E R AE o AR R W ARSD, 2 PRI 2, /2R, 2 s 2. Bk
LG — Tl ARSI T35 —ANRES, B th T8O T INRES, BT LAANTT RE [A X i AR A

COnRARIRAE I, RIS EAT, R IR AT 2 T K- RIS RS o

Command Set:

W

The following are the only commands that may be sent to the mouse... If the mouse is in Stream mode, the host
should disable data reporting (command 0xF5) before sending any other commands...

N HIAY AT AR ST BRI A AR BUbR TAEAE Stream 5, AU AILAEATH A iy & 2 i 2
AR BT (TS 0xF5),

OxFF (Reset) - The mouse responds to this command with "acknowledge" (0xFA) then enters Reset Mode.
OxFF (Reset) — bR “MNE” (0xFA) [HINIX 452 FH1UEA Reset 5,

@® OxFE (Resend) - The host sends this command whenever it receives invalid data from the mouse. The

mouse responds by resending the last(2) packet(3) it sent to the host. If the mouse responds to the
"Resend" command with another invalid packet, the host may either issue another "Resend" command,
issue an "Error" command, cycle the mouse's power supply to reset the mouse, or it may inhibit
communication (by bringing the Clock line low). The action taken depends on the host.

@ OxFE (Resend) — L EM BRI TR NSRRI S50 BUbR A B Wt SR A i B dm n K
SEHMESEE ovrme o0 o0 WEREARH T 538 ARE R KIBIN, EHLE A KA T4
“Resend” fii%, T4 KA “Error” x4, BALLRARER FHORE NS, e e s
L) o R ARER B EIRR T L.

@® 0xF6 (Set Defaults) - The mouse responds with "acknowledge" (0XxFA) then loads the following values:
Sampling rate = 100, Resolution = 4 counts/mm, Scaling = 1:1, Disable Data Reporting. The mouse then
resets its movement counters and enters stream mode.

@ O0xF6 (Set Defaults) —FlFrH “MN%” (0xFA) SKMIN, SREHANWITHME: RFEFE=100, 5Hi%
=4 ME/K, HWHI=1: 1, 258 B RS2 ST R TR JFRE stream £

@® O0xF5 (Disable Data Reporting) - The mouse responds with "acknowledge" (0XFA) then disables data
reporting and resets its movement counters. This only effects data reporting in Stream mode and does
not disable sampling. Disabled stream mode funcions the same as remote mode.

® O0xF5 (Disable Data Reporting) — [brH “NZ” (0xFA) [N a4, ARG 25 1EE S R AL E W

542 k42 W 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

R v s . XA Stream BT FEHIR & A ROF G AN BEAE LKA . 25101 stream #EAT)fE
55 remote BLAAH [.

@® O0xF4 (Enable Data Reporting) - The mouse responds with "acknowledge" (0xFA) then enables data
reporting and resets its movement counters. This command may be issued while the mouse is in Remote
Mode (or Stream mode), but it will only effect data reporting in Stream mode.

® 0xF4 (Enable Data Reporting) — MR “ N2 (0xFA) [FIN#r4, ARG ReE S IR A E M
PR o X452 T LAXTE Remote 1530 (5 Stream BEAD R ERAFR KA, (HIX] Stream B
A EEAR R

@® O0xF3 (Set Sample Rate) - The mouse responds with "acknowledge" (0XxFA) then reads one more byte from
the host. The mouse saves this byte as the new sample rate. After receiving the sample rate, the mouse
again responds with "acknowledge" (0xFA) and resets its movement counters. Valid sample rates are 10,
20, 40, 60, 80, 100, and 200 samples/sec.

@ OxF3 (Set Sample Rate) — ks “M%&” (0xFA) [HIN#r4, RGN ENERAN DL 7,
BUBR O B XA AR B R . AW RR AR AT, USR] “ % (0xFAD [N 5
P AR TS . AR PR %2 10, 20, 40, 60, 80, 100 1 200 KA £/FD.

@® 0xF2 (Get Device ID) - The mouse responds with "acknowledge" (0xFA) followed by its device ID (0x00
for the standard PS/2 mouse.) The mouse should also reset its movement counters.

@ 0xF2 (Get Device ID) — filbsHH “ %" (0xFA) [al iy & Jo HIERAE & 1B ID CRbRifE PS/2 filbs
Kise 0x00) . FUbR RS S ML T .

@® O0xFO0 (Set Remote Mode) - The mouse responds with "acknowledge" (0XFA) then resets its movement
counters and enters remote mode.

@® 0xF0 (Set Remote Mode) — FlbnH “N2Z” (0xFA) [HIN, KRG R E KN EES, 3 Remote
e

® OxEE (Set Wrap Mode) - The mouse responds with "acknowledge" (0XFA) then resets its movement
counters and enters wrap mode.

® OxEE (Set Wrap Mode) — EbrH “ W27 (0xFA) [HIN, SRJGEALE AT EEs, JEEEAN wrap
e

® OxEC (Reset Wrap Mode) - The mouse responds with "acknowledge" (0XxFA) then resets its movement
counters and enters the mode it was in prior to wrap mode (Stream Mode or Remote Mode.)

® OxEC (Reset Wrap Mode) — fiAnH “MNE” (0xFA) [AIN, RJGEALE I T8, JFEEAN wrap
B2 AT IR (stream R K remote #E0),

@® O0xEB (Read Data) - The mouse responds with acknowledge (0xFA) then sends a movement data packet.
This is the only way to read data in Remote Mode. After the data packets has been successfully sent, it
resets its movement counters.

® OxEB (Read Data) —bsH “MVE” (0xFA) [HIN, SRJERIEMBEHIM . X2ELE remote A
B O ME— R ERR O A AR e, AR AL LA T s

@® OxEA (Set Stream Mode) - The mouse responds with "acknowledge" then resets its movement counters
and enters steram mode.

@ OxEA (Set Stream Mode) — bR “NV 27 (OxFA) AN, KRG A e IS, FFEEN stream
e

@® O0xE9 (Status Request) - The mouse responds with "acknowledge" then sends the following 3-byte status
packet (then resets its movement counters.):

@ O0xE9 (Status Request) — RlbrH “MN2&” (0xFA) [N, ARGRIZEM T 3 NFHHPRESE RERE
RE AL T EER D -

Bit7 Bit 6 Bit 5 Bit4 Bit3 Bit2 Bit1 Bit0

543 T3k 43 T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

Byte 1 Always 0 Mode Enable Scaling Always 0 Left Btn Middle Btn | Right Btn
Byte 2 Resolution
Byte 3 Sample Rate

Right, Middle, Left Btn = 1 if button pressed; 0 if button is not pressed.

Scaling = 1 if scaling is 2:1; 0 if scaling is 1:1. (See commands 0XE7 and 0xE6)

Enable = 1 if data reporting is enabled; 0 if data reporting is disabled. (See commands 0xF5 and 0xF4)
Mode = 1 if Remote Mode is enabled; 0 if Stream mode is enabled. (See commands 0xF0O and 0xEA)
frdts . =1 R N =0 R AIE T

Scaling = 1 45/ ELBIAL 2: 1; =0 LbBIh 1: 1. (Wir4 OxE7 Fl 0xE6)

Enable = 1 - Hia it i gl flfig: =0 ZoR Bl & gtk (ILdy4 OxF5 Al 0xF4)

Mode = 1 78 remote BB RE; =0 KR stream BEABAFRE. (ILiv 42 0xFO £l OXEA)

@® O0xE8 (Set Resolution) - The mouse responds with acknowledge (0xFA) then reads one byte from the host
and again responds with acknowledge (0xFA) then resets its movement counters. The byte read from the
host determines the resolution as follows:

@ O0xE8 (Set Resolution) — AR “MN2&” (0xFA) [N, AR5 MENLEEE —ANFTT, FRRRE “RM
%7 (OXFAD [RIN, ARG EAE RIS o N ENARI T IUE TP, Wiks:

Byte Read from Host Resolution

0x00 1 count/mm
0x01 2 count/mm
0x02 4 count/mm
0x03 8 count/mm

® OxE7 (Set Scaling 2:1) - The mouse responds with acknowledge (0XFA) then enables 2:1 scaling
(discussed earlier in this document.)

@® O0xE7 (SetScaling 2:1) — b “ W% (0xFA) [HI)%, SRJGAERE 2: 1 B (FEARSCHRITHIS L),

@® OxE6 (Set Scaling 1:1) - The mouse responds with acknowledge (0XxFA) then enables 1:1 scaling
(discussed earlier in this document.)

@® O0xE6 (SetScaling 1:1) — ARl “Ni%k” (OxFA) [BIN, SRJSGAERE 1. 1 LuB] (ZEASCRTTIII IS

The only commands the standard PS/2 mouse will send to the host are the "Resend" (0xFE) and "Error" (0xFC)
commands. They both work the same as they do as host-to-device commands.

X FhRdE AR 5 A “Resend” (OxFE) Fll “Error” (0xFC) v RIES FMl. XM A& H TAE
AU AL 2 B4 1) 1) iy 2 —FF

Initialization:

FIade:

The PS/2 mouse is normally detected/initialized only when the computer is booting up. That is, the mouse is
not hot-pluggable and you must restart your computer whenever you add/remove a PS/2 mouse (furthermore,
some motherboards may be damaged if you add/remove a PS/2 mouse while the computer is running.)
IEHNET, PS/2 WARMUAETHENUE S RHR A AW aa 1k . PRIk, bR AN RERAIE R, AR N
B E PS/2 BbR, R EEEURT A S IREONLAS CBeAh, i RARLE T SEHLITA B I35 In/# 7 PS/2 flbs,
A RES A SELE O .

5 44 T 44 T 02-11-24 Al

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

The initial detection of the PS/2 mouse occurrs during POST. If a mouse is detected, the BIOS will allow the
operating system to configure/enable the mouse. Otherwise, it will inhibit communication on the mouse's bus.
If you boot the computer with a mouse attached, then detach/reattach the mouse while in Windows, the OS
may be able to detect the mouse was reattached. Microsoft tried to support this, but it only works about 50%
of the time.

PS/2 SR AIATAEAL N A A POST JIH] o WZR BUARLINE] T, BIOS 5 SuViRAE REUHC E /L g Wlbr . 15
U] OS g AE 1B Blbr sl 2 ETE . WERIRE 30— G4 BARITHRNL, MRS 7E windows Lk 5 S HD T
i L bR, OS tHVFRERINE] Fbr X EBif L T . Microsoft AR MURFE L RFIXFEMHEME, HA2 AT
2 50% LU R, e BUTARR

The following is the communication between my computer (running Win98SE) and mouse when it boots up
with a standard PS/2 mouse attached. It is fairly typical of how a PS/2 mouse is initialized and if you want to
emulate a PS/2 mouse it must (at minimum) be able to support the following sequence of commands...

N HEEERIIT AL G217 Win98SE) FEUARZ 18] IE IR, JH SR IRl —4> PS/2 flbr. PS/2 Bbr
IAE A I AR M R R dn AR ZEA EL— A PS/2 Blbs, A0 (/D) ResCRrn R 2741

Power-on Reset:

A

Mouse: AA Self-test passed
Mouse: 00 Mouse ID

Host: FF Reset command
Mouse: FA Acknowledge
Mouse: AA Self-test passed
Mouse: 00 Mouse ID

Host: FF Reset command
Mouse: FA Acknowledge
Mouse: AA Self-test passed
Mouse: 00 Mouse ID

Host: FF Reset command
Mouse: FA Acknowledge
Mouse: AA Self-test passed
Mouse: 00 Mouse ID

Host: F3 Set Sample Rate : Attempt to Enter Microsoft
Mouse: FA Acknowledge : Scrolling Mouse mode
Host: C8 decimal 200 :
Mouse: FA Acknowledge

Host: F3 Set Sample Rate
Mouse: FA Acknowledge

Host: 64 decimal 100

Mouse: FA Acknowledge

Host: F3 Set Sample Rate
Mouse: FA Acknowledge

Host: 50 decimal 80

Mouse: FA Acknowledge

Host: F2 Read Device Type

&
AN
W
=
Pz
AN
W
=

02-11-24 KA

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

Mouse: FA Acknowledge
Mouse: 00 Mouse ID

Host: F3 Set Sample Rate
Mouse: FA Acknowledge
Host: 0A decimal 10
Mouse: FA Acknowledge
Host: F2 Read Device Type
Mouse: FA Acknowledge
Mouse: 00 Mouse ID

Host: E8 Set resolution
Mouse: FA Acknowledge
Host: 03 8 Counts/mm
Mouse: FA Acknowledge
Host: E6 Set Scaling 1:1
Mouse: FA Acknowledge
Host: F3 Set Sample Rate
Mouse: FA Acknowledge
Host: 28 decimal 40
Mouse: FA Acknowledge
Host: F4 Enable

Mouse: FA Acknowledge

Initialization complete...

VIR SE

If I then press the Left Button...
U SR A% A

Mouse: 09 1 1 00001001; bitO = Left button state; bit3 = always 1

Mouse: 00 1 1 No X-movement
Mouse: 00 1 1 No Y-movement

... and release the Left Button:

SR A RE T/ k-

Mouse: 08 0 1 00001000 bit0 = Left button state; bit3 = always 1

Mouse: 00 1 1 No X-movement
Mouse: 00 1 1 No Y-movement

: Response 03 if microsoft scrolling mouse

The following is the communication between my computer (running Win98SE) and mouse when it boots up

with an (emulated) Intellimouse...

RIS T FEHLR BRI GEIR, X UH SR A (720D Intellimouse.

Power-on Reset:

A

Mouse: AA Self-test passed
Mouse: 00 Mouse ID

Host: FF Reset command
Mouse: FA Acknowledge

#

=
ps

p=i

02-11-24 KA

PS/2 HiRZ %

#%: Adam Chapweske i¥: Roy Show

Mouse: AA
Mouse: 00
Host: FF
Mouse: FA
Mouse: AA
Mouse: 00
Host: FF
Mouse: FA
Mouse: AA
Mouse: 00
Host: F3
Mouse: FA
Host: C8
Mouse: FA
Host: F3
Mouse: FA
Host: 64
Mouse: FA
Host: F3
Mouse: FA
Host: 50
Mouse: FA
Host: F2
Mouse: FA
Mouse: 03
Host: ES8
Mouse: FA
Host: 03
Mouse: FA
Host: E6
Dev: FA
Host: F3
Mouse: FA
Host: 28
Mouse: FA
Host: F4
Mouse: FA

Self-test passed
Mouse ID
Reset command
Acknowledge
Self-test passed
Mouse ID
Reset command
Acknowledge
Self-test passed
Mouse ID
Set Sample Rate
Acknowledge
decimal 200
Acknowledge
Set Sample Rate
Acknowledge
decimal 100
Acknowledge
Set Sample Rate
Acknowledge
decimal 80
Acknowledge
Read Device Type
Acknowledge
Mouse ID
Set Resolution
Acknowledge
8 counts/mm
Acknowledge
Set scaling 1:1
Acknowledge
Set Sample Rate
Acknowledge
decimal 40
Acknowledge
Enable device
Acknowledge

: Attempt to Enter Microsoft
: Scrolling Mouse mode

: Response 03 if microsoft scrolling mouse

If I then press the left mouse button:

R A% T lbe Ao

Mouse: 09
Mouse: 00
Mouse: 00
Mouse: 00

00001001 bit0 = Left button state; bit3 = always 1

No X-movement
No Y-movement

No Z-movement

...and then release the left mouse button button:

Ape

H

47 |

It

e

~

47

g

~

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

SR T bR Ao

Mouse: 08 00001000 bit0 = Left button state; bit3 = always 1
Mouse: 00 No X-movement

Mouse: 00 No Y-movement

Mouse: 00 No Z-movement

After I downloaded/installed the Microsoft's Intellimouse drivers with support for the 4th and 5th buttons, the

following sequence was found:

FEPR T BT L T WCCRRER 4 A2 5 8210 Intellimouse HUUKEN)5, AHL T W0 R P41

... (starts same as before) ...
CIT R 308 23 AT T AR DD
Host: F3 Set Sample Rate : Attempt to Enter Microsoft
Mouse: FA Acknowledge : Scrolling Mouse mode.
Host: C8 decimal 200 :
Mouse: FA Acknowledge
Host: F3 Set Sample Rate
Mouse: FA Acknowledge
Host: 64 decimal 100
Mouse: FA Acknowledge
Host: F3 Set Sample Rate
Mouse: FA Acknowledge
Host: 50 decimal 80
Mouse: FA Acknowledge
Host: F2 Read Device Type
Mouse: FA Acknowledge

Mouse: 03 Mouse ID : Response 03 if microsoft scrolling mouse.
Host: F3 Set Sample Rate : Attempt to Enter Microsoft 5-button

Mouse: FA Acknowledge : Scrolling Mouse mode.
Host: C8 decimal 200 :

Mouse: FA Acknowledge

Host: F3 Set Sample Rate

Mouse: FA Acknowledge

Host: C8 decimal 200

Mouse: FA Acknowledge

Host: F3 Set Sample Rate

Mouse: FA Acknowledge

Host: 50 decimal 80

Mouse: FA Acknowledge

Host: F2 Read Device Type

Mouse: FA Acknowledge

Mouse: 04 Mouse ID : Response 04 if 5-button scrolling mouse.

... rest of initialization same as before ...

AR A8 2% 798 53 AR THTAH 7] o

Emulation/Interfacing:

&
I
)
=
H
I
)
=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

R/

Click here for routines that emulate a PS/2 mouse or keyboard

I HLSRAF A B PS/2 BRbR ml B ()]

Click here for routines that emulate a PS/2 host (ie, interface a mouse/keyboard)
s IX HRAI 07 5L PS/2 EHLMBIRE CEIT, 0 EUbs B B B 11D

Click here for a fully-functional PS/2 mouse written for the PIC16F84.

miiIX HLARAHE] PIC16F84 14T e PS/2 Flbr

EAT T X LSRR AR AR SR B S 44 5. 6 the W 1)

~

If you want to build a truely fully-implemented mouse or host, you should implement all of the features
described in this document (except for, of course, the Microsoft Intellimouse extensions, which are optional).
However, at an absolute minimum, your device should operate as follows:

I RAREEGE S, — AN FLE 58 4 LI BAR B ML, AR LA SCRGA B T AR IE CEARER T R
Intellimouse 9" Ji&, RN EE T IENT) o (HEGEASUR B] A1 i dF A AR AR

To Emulate a Mouse:
SR B BB :

@® Never send data when the "Clock” line low. If the host pulls the "Data" line low, prepare to read a byte
from the host.

@ ZNIARTILE BN SONARMI IR R IR H A . R U B, v A N ML A
® ~500 milliseconds after powerup, transmit "0xAA, 0x00".

® LHA 500 ZF /54, KiE “OxAA. 0x007,

@ Wait for the host to send the enable (0xF4) command before sending any movement/button data.
@ (1 SRATA AL R A SR AT A A LR IE A RE (0xF4) Air .

@® Emulate the various mouse functions as follows:

@ LRI A AN AR T REWI T -

Emulated Action Data sent to host

Move up one 0x08,0x00,0x01

Move down one 0x28,0x00,0xFF

Move right one 0x08,0x01,0x00

Move left one 0x18,0xFF,0x00

Press left button 0x09,0x00,0x00

Release left button 0x08,0x00,0x00

Press middle button 0x0C,0x00,0x00

Release middle button 0x08,0x00,0x00

Press right button 0x0A,0x00,0x00

Release right button 0x08,0x00,0x00

@® Respond to the "Reset" (0XxFF) command with "0XFA" then goto the beginning of your program. (ie, send
0xAA, 0x00, then wait for the enable command before sending any movement/button data.)
® JI] “OxFA” [H|; “Reset” (OxFF) fir4, SRJGHEHEBIRELFHRIHFAGAL. (B, A% OXAA. 0x00, 7L
FIERL R B AT S A A RE)
@® Respond to the "Get Device ID" (0xF2) command with "0xFA, 0x00".
55 49 BUIL 49 1T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
@ Ji] “OxFA. 0x00” [H[“3R{F ¥4 ID” (0xF2) T4

Respond to the "Status Request" (0XxE9) command with "0xFA, 0x00, 0x02, 0x64".

H “OxFA. 0x00. 0x02. 0x64” [“IRZSTHFK” (0XE9) #rd.

Respond to all other commands with acknowledge (0xFA).
A5 COXFAD |81 BTy HAt i) iy 2

To Interface a Mouse:

TN BlARA% I -

@® Wait for the mouse to send "0xAA", then send the "Enable" (0xF4) command.

@ HRFRARAIE “OXAA” G, ARJERIE “AERE” (0xF4) A,

@® The mouse will then send a 3-byte movement packets as described earlier in this document.
@ SRJ5 SRR AR A SCRT T F AR 3 45 AL A H s .

Footnotes:

JAIE -

1) 2:1 scaling only applies to the automatic data reporting in Stream mode. It does not effect the reported data
sent in response to the "Read Data" (0xEB) command.

2: 1 EeBIGE T Stream B H BhEH R S, XS T RN “Read Data” (0XEB) it &[4 5 £ &

P/ I

2) The mouse and host do not buffer "Resend" (0xFF) commands. This means "OxFE" will never be sent in
response to the "Resend" command.
PR A EHLAZEM “Resend” (OxFF) fird. IXEKAT “OXFE” ZAASAEN “Resend” T4 BN R K

3) A "packet" may be a 3-byte movement data packet, a 4-byte movement data packet (for the Intellimouse),
a 3-byte status packet (see "Status Request"” [0XE9] command) a 2-byte completion-code-ID packet
(0xAA,0x00 or 0xFC,0x00), or a 1-byte response to a command.

A “HEE” TR 3 AR B, B4 AR B AL (Intellimouse D, BE 3 TR
A, (Bt “Status Request” 0xE9 fir4), 8L 2 F-5 58 A5 ID £ (0xAA. 0x00 5% 0xFC. 0x00), &Y
IR EIVA

4) A little advice from my own experience... Even though bit 3 of the first byte in a movement data packet
is supposed to be set, some drivers (such as the standard PS/2 mouse driver included with Windows 98SE)
don't care and just ignore that bit. However, other drivers do check that bit and if it is not set, it is considered
an error. [mention this so that, if you're designing a mouse, you double-check that this bit is set in every
movement data packet sent by your mouse. If it is not, your mouse may work properly when you test it on
your computer, but it may not work on other computers that use different mouse drivers.

FA LI — RN RIEAAS Bl (v A IO 3 A T, RIS GEARAE PS/2 bR
9z, WHE windows98SE (1)) JFA KL HAR/R B 5IX —fL . {E 2 HAR RS] e fr X — A7t 77 i
BT R E N MR P SR R, WORARBET AN bR, AR A e R R
IRk R R B P XA R A T o WEREAT, B AR BARAEAR VSR L P37]
RE TARAHARES, 1t 2530 (48 A AN BUbR 9 3h A TSN L Bl AN A 71

CEHTE: AL 3 e MR = 28 4 470

2550 jiAt 50 7T 02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

For example, if using MS Intellimouse drivers and bit 3 of the first byte in a movement data packet is not set,
the driver will discard that packet, then send the "Disable Data Reporting" (0xF5) command, followed by the
"Set Defaults" (0xF6) command, then it will reinitialize the mouse using the same command sequence as it
does when Windows boots up (see the "Initialization" section above.)

Bhn, WERAEH] MS Intellimouse JX5), AL EHAH 7ML 3 WA BE, WaREHEFEN,
SR)G K i% “Disable Data Reporting” (0xF5) 174>, ¥RFG /2 “Set Defaults” (0xF6) 4. S8 {# [windows
JE I AH R) i 2 Fe A BB A AR AL BUbR COL_LTin i) “ BIa6 46 #673).

Other Sources / References:

HA B IZ7%

Holtek - Informative datasheets on many different PS/2 mice (and other peripherals).
EMC - More inormative datasheets on many different PS/2 mice (and an ADB mouse).

Synaptics Touchpad Interfacing Guide -Very informative!

More links - Many more links to related information.

&
W
=z
=
H
W
=z
=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

fix— BRI
*PITAT RME AR T /N BEHI

101 102 F1 104 (4 fl 45 .

KEY MAKE BREAK KEY MAKE BREAK KEY MAKE BREAK
A 1E 9E 9 0A 8A [1A 9A
B 30 BO) 29 89 INSERT E0,52 E0,D2
C 2E AE - 0C 8C HOME E0,47 E0,97
D 20 A0 = 0D 8D PG UP E0,49 E0,C9
E 12 92 \ 2B AB DELETE | E0,53 E0,D3
F 21 Al BKSP OE 8E END E0,4F E0,CF
G 22 A2 SPACE 39 B9 PG DN E0,51 E0,DI
H 23 A3 TAB OF 8F U ARROW | E0,48 E0,C8
I 17 97 CAPS 3A BA L ARROW | E04B E0,CB
] 24 A4 L SHFT 2A AA D ARROW | E0,50 E0,DO
K 25 AS L CTRL 1D 9D R ARROW | E04D E0,CD
L 26 A6 L GUI E0,5B E0,DB NUM 45 cs
M 32 B2 L ALT 38 B8 KP/ E0,35 E0,B5
N 31 Bl R SHFT 36 B6 KP * 37 B7
0 18 98 RCTRL | E0,ID E0,9D KP - 4A CA
P 19 99 R GUI E0,5C E0,DC KP + 4E CE
Q 10 19 R ALT E0,38 E0,B8 KP EN E0,1C E0,9C
R 13 93 APPS E0,5D E0,DD KP. 53 D3
S 1F 9F ENTER 1C 9C KP 0 52 D2
T 14 94 ESC 01 81 KP 1 4F CF
U 16 96 F1 3B BB KP2 50 DO
\% 2F AF F2 3C BC KP3 51 DI
w 11 91 F3 3D BD KP 4 4B CB
X 2D AD F4 3E BE KP5 4C cc
Y 15 95 F5 3F BF KP 6 4D CD
z 2C AC F6 40 Co KP 7 47 c7
0 0B 8B F7 41 Cl1 KP 8 48 C8
1 02 82 F8 42 c2 KP 9 49 C9
2 03 83 F9 43 c3] 1B 9B
3 04 84 F10 44 c4 ; 27 A7
4 05 85 Fl1 57 D7 ' 28 A8
5 06 86 F12 58 D8 , 33 B3
PRNT EO0,2A, E0,B7,
6 07 87 . 34 B4
SCRN E0,37 E0,AA
7 08 88 SCROLL | 46 Cé6 / 35 BS
E1,1D45
8 09 89 PAUSE -NONE-
E1,9D,C5

b
U
)
=
P
U
)
=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

ACPI #1414

Key Make Code Break Code
Power EO, 5E EO0, DE
Sleep EO, 5F EO, DF
Wake EO, 63 EO0, E3
Windows 2 B4R Hlif «

Key Make Code Break Code
Next Track EO, 19 E0, 99
Previous Track EO, 10 EO0, 90
Stop EO, 24 EO0, A4
Play/Pause EO0, 22 EO0, A2
Mute EO, 20 EO0, A0
Volume Up EO, 30 EO0, BO
Volume Down EO, 2E EO0, AE
Media Select EO, 6D EO0, ED
E-Mail E0, 6C EO0, EC
Calculator EO, 21 EO, Al
My Computer EO, 6B EO, EB
WWW Search EO, 65 EO0, ES
WWW Home EO, 32 EO0, B2
WWW Back EO0, 6A EO0, EA
WWW Forward EO0, 69 EO0, E9
WWW Stop EO, 68 EO, E8
WWW Refresh EO0, 67 EO0, E7
WWW Favorites EO, 66 EO, E6

02-11-24 KA

&
W
o
=
H
W
o
=

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

fisx— 2 EREEHEN
*PITAT RME AR T /N BEHI

101 102 F1 104 (4 fl 45 .

KEY MAKE BREAK KEY MAKE BREAK KEY MAKE BREAK
A 1C F0,1C 9 46 F0,46 [54 FO,54
B 32 F0,32 OE FO,0E INSERT E0,70 E0,F0,70
C 21 F0,21 - 4E FO4E HOME E0,6C E0,F0,6C
D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D
E 24 F0,24 \ 5D F0,5D DELETE | E0,71 E0,F0,71
F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69
G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A
H 33 F0,33 TAB 0D F0,0D U ARROW | E0,75 E0,F0,75
I 43 F0,43 CAPS 58 F0,58 L ARROW | E0,6B E0,F0,6B
] 3B F0,3B L SHFT 12 FO,12 D ARROW | E0,72 E0,F0,72
K 42 F0,42 L CTRL 14 FO,14 R ARROW | E0,74 E0,F0,74
L 4B F0,4B L GUI EO0,1F E0,FO,IF | NUM 77 F0,77
M 3A FO,3A L ALT 11 FO,11 KP/ E0,4A E0,F0,4A
N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C
0 44 F0,44 RCTRL | E0,14 E0,F0,14 | KP- 7B F0,7B
P 4D F0,4D R GUI E0,27 E0,F0,27 | KP+ 79 F0,79
Q 15 F0,15 R ALT EO0,11 E0,F0,11 | KPEN E0,5A E0,F0,5A
R 2D F0,2D APPS E0,2F E0,FO2F | KP. 71 F0,71
S 1B F0,1B ENTER 5A FO,5A KP 0 70 F0,70
T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69
U 3C F0,3C F1 05 F0,05 KP2 72 F0,72
\% 2A FO,2A F2 06 F0,06 KP3 7A FO,7A
w 1D F0,1D F3 04 F0,04 KP 4 6B F0,6B
X 22 F0,22 F4 0C F0,0C KPS 73 F0,73
Y 35 F0,35 F5 03 F0,03 KP 6 74 F0,74
z 1A FO,1A F6 0B F0,0B KP 7 6C F0,6C
0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75
1 16 F0,16 F8 0A FO,0A KP 9 7D F0,7D
2 1E FO,1E F9 01 F0,01] 5B F0,5B
3 26 F0,26 F10 09 F0,09 ; 4C FO0,4C
4 25 F0,25 Fl1 78 F0,78 ' 52 F0,52
5 2E FO,2E F12 07 F0,07 , 41 F0,41
E0,F0,
PRNT E0,12,
6 36 F0,36 SCRN H0.7C 7C,E0, 49 F0,49
F0,12
7 3D F0,3D SCROLL | 7E F0,7E / 4A FO,4A
E1,14,77, | -NONE-
8 3E FO0,3E PAUSE E1,F0,14,
F0,77
55 54 G 54 T 02-11-24 KAji

PS/2 HiRZ %

#%: Adam Chapweske i¥: Roy Show

ACPI 44

Key Make Code Break Code
Power EO, 37 EO, FO, 37
Sleep EO, 3F EO, FO, 3F
Wake EO, 5E EO, FO, 5E
Windows 2 B4R Hfif :

Key Make Code Break Code
Next Track EO, 4D EO, FO, 4D
Previous Track EO, 15 EO, FO, 15
Stop EO0, 3B EO, FO, 3B
Play/Pause EO0, 34 EO, FO, 34
Mute EO, 23 EO, FO, 23
Volume Up EO, 32 EO, FO, 32
Volume Down EO, 21 EO, FO, 21
Media Select EO, 50 EO, FO, 50
E-Mail EO, 48 EO, FO, 48
Calculator EO, 2B EO, FO, 2B
My Computer EO0, 40 EO, FO, 40
WWW Search EO, 10 EO, FO, 10
WWW Home EO0, 3A EO, FO, 3A
WWW Back EO, 38 EO, FO, 38
WWW Forward EO0, 30 EO, FO, 30
WWW Stop EO, 28 EO, FO, 28
WWW Refresh EO0, 20 EO0, FO, 20
WWW Favorites EO, 18 EO, FO, 18

&
W
W
b=

ps

=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

= H=ERETMY

KEY MAKE BREAK | KEY MAKE BREAK | KEY MAKE BREAK
A 1C F0,1C 9 46 F0,46 [54 F0,54
B 32 F0,32) OE FO,0E INSERT 67 F0,67
C 21 F0,21 - 4E FO4E HOME 6E FO,6E
D 23 F0,23 = 55 F0,55 PG UP 6F FO,6F
E 24 F0,24 \ 5C F0,5C DELETE | 64 F0,64
F 2B F0,2B BKSP 66 F0,66 END 65 F0,65
G 34 F0,34 SPACE 29 F0,29 PG DN 6D F0,6D
H 33 F0,33 TAB 0D F0,0D U ARROW | 63 F0,63
I 43 F0,48 CAPS 14 F0,14 L ARROW | 61 F0,61
] 3B F0,3B L SHFT 12 F0,12 D ARROW | 60 F0,60
K 42 F0,42 L CTRL 11 FO,11 R ARROW | 6A FO,6A
L 4B F0,4B L WIN 8B F0,8B NUM 76 F0,76
M 3A FO,3A L ALT 19 F0,19 KP/ 4A FO,4A
N 31 F0,31 R SHFT 59 F0,59 KP * 7E FO0,7E
0 44 F0,44 RCTRL | 58 F0,58 KP - 4E FO4E
P 4D F0,4D R WIN 8C F0,8C KP + 7C F0,7C
Q 15 F0,15 R ALT 39 F0,39 KP EN 79 F0,79
R 2D F0,2D APPS 8D F0,8D KP. 71 F0,71
S 1B FO0,1B ENTER 5A FO,5A KP 0 70 F0,70
T 2C F0,2C ESC 08 F0,08 KP 1 69 F0,69
U 3C F0,3C F1 07 F0,07 KP2 72 F0,72
\Y% 2A FO,2A F2 OF FO,0F KP3 7A FO,7A
w 1D F0,1D F3 17 F0,17 KP 4 6B F0,6B
X 22 F0,22 F4 IF FO,IF KPS 73 F0,73
Y 35 F0,35 F5 27 F0,27 KP 6 74 F0,74
z 1A FO,1A F6 2F FO,2F KP 7 6C F0,6C
0 45 F0,45 F7 37 F0,37 KP 8 75 F0,75
1 16 F0,16 F8 3F FO,3F KP 9 7D F0,7D
2 1E FO,1E F9 47 F0,47] 5B F0,5B
3 26 F0,26 F10 4F FO,4F ; 4C F0,4C
4 25 F0,25 Fl1 56 F0,56 ' 52 F0,52
5 2E FO,2E F12 5E F0,5E , 41 F0,41
PRNT
6 36 F0,36 57 F0,57 . 49 F0,49
SCRN
7 3D F0,3D SCROLL | 5F F0,5F / 4A FO,4A
8 3E FO0,3E PAUSE 62 F0,62

b
W
=N
=
P
W
=
=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

FFEIT PS/2 & 51FE

These routines can be used to emulate a PS/2 mouse or keyboard. They were written for a PIC16F84 @ 4.61
MHz +/- 25% (perfect for a 5k/20pF RC oscillator). For more information about the PS/2 mouse, keyboard,
and their protocol, check out one of the folowing links:

XA T E PS/2 lbre it . & M T PIC16F84, IR¥% % A 4.61MHz +/-25% (i J] 5k/20pF
RC fizas). KT PS/2 Blbn. BEALLZENIIPSL, R R AR

The AT Keyboard Interface
The PS/2 Mouse Interface
PS/2 Mouse/Keyboard Protocol

CHBVE: PSSO T, S, D

Header:

>

; CLOCK/TIMING INFORMATION:

>

; PS/2 bus clock low time = 40 us +/- 25% (30 us - 50 us)

; PS/2 bus clock high time = 40 us +/- 25% (30 us - 50 us)

; RC osc @ 20pF/5k =4.61 MHz +/- 25% (3.50 MHz - 5.76 MHz)

; 1 instruction cycle @ 4.61 MHz (RC) = 0.87 us +/- 25% (0.65 us - 1.09 us)

; Optimum PS/2 bus clock low time @4.61MHz = 45.97 instruction cycles

; Actual PS/2 bus clock low time = 46 instruction cycles

; Actual PS/2 bus clock low time @4.61MHz (RC) = 40.0us +/- 25% (30us-50us)

; Actual PS/2 bus clock frequency @461 MHz (RC) = 12.5 kHz +/- 25% (10.0kHz-16.7kHz)

; HEADER:
TITLE "PS/2 Device Routines"
SUBTITLE "By Adam Chapweske"
LIST P=16F84
INCLUDE "p16f84.inc"
RADIX DEC

ERRORLEVEL -224, 1
__CONFIG _CP OFF & WDT OFF & RC_OSC

>

: DEFINES:

#DEFINE DATA PORTB, 7
#DEFINE CLOCK PORTB, 6

>

; RAM ALLOCATION:

&
W
Q
=
H
W
Q
=

02-11-24 KA

#%: Adam Chapweske i¥: Roy Show

PS/2 iK%

cblock
TEMPO
RECEIVE
PARITY
COUNTER
endc

Required Routines & Macros:

>

: MACROS:

Delay macro
if (Time==1)
nop
exitm
endif
if (Time==2)

Time

goto $+ 1

exitm
endif
if (Time==3)

nop

goto $ + 1

exitm
endif
if (Time==4)

goto $ + 1
goto $ + 1

exitm
endif
if (Time==5)

goto $ + 1
goto $ + 1

nop
exitm

endif

if (Time==6)

goto $ + 1
goto $ + 1
goto $ + 1

exitm
endif
if (Time==7)

;Delay "Cycles" instruction cycles

#

=
ps

=

02-11-24 KA

PS/2 HiRZ %

#%: Adam Chapweske i¥: Roy Show

goto $ + 1
goto $ + 1
goto $ + 1
nop
exitm

endif

if (Time%4==0)
movlw (Time-4)/4
call Delay Routine
exitm

endif

if (Time%4==1)
movlw (Time-5)/4
call Delay Routine
nop
exitm

endif

if (Time%4==2)
movlw (Time-6)/4
call Delay Routine
goto $+ 1
exitm

endif

if (Time%4==3)
movlw (Time-7)/4
call Delay Routine
goto $ + 1
nop
exitm

endif

endm

>

; DELAY:

>

;Delays 4w+4 cycles (including call,return, and movlw) (0=256)

Delay Routine addlw -1 ;Precise delays used in I/O
btfss STATUS, Z
goto Delay Routine

return

ByteOut:
Sends a byte in w to the host. Returns OxFE if inhibited during transmission.

interrupts to send its own data. Returns 0x00 if byte sent successfully.

%5 59 Tidt 59 I

Returns OxFF if host

02-11-24 KA

#%: Adam Chapweske i¥: Roy Show

PS/2 HiRZ %

>

; OUTPUT ONE BYTE: - TIMING IS CRITICAL!!!

>

ByteOut movwf TEMPO
InhibitLoop btfss CLOCK
goto InhibitLoop
Delay 50
btfss CLOCK
goto InhibitLoop
btfss DATA
retlw OxFF
clrf PARITY
movlw 0x08
movwf COUNTER
movlw 0x00
call BitOut
btfss CLOCK
goto ByteOutEnd
Delay 4
ByteOutLoop movf TEMPO, w
xorwf PARITY, f
call BitOut
btfss CLOCK
goto ByteOutEnd
rrf TEMPO, f
decfsz COUNTER, f
goto ByteOutLoop
Delay 2
comf PARITY, w
call BitOut
btfss CLOCK
goto ByteOutEnd
Delay 5
movlw OxFF
call BitOut
Delay 48
retlw 0x00
ByteOutEnd bsf STATUS, RPO
bsf DATA
bsf CLOCK
bef STATUS, RPO
retlw OxFE
BitOut bsf STATUS, RPO
andlw 0x01
@

;Test for inhibit

;Check for request-to-send

;Start bit (0)
;Test for inhibit

;Data bits
;Test for inhibit

;Parity bit
;Test for inhibit

;Stop bit (1)

60 T1IL 60 TT

02-11-24 KA

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

Byteln:

Reads a byte from the host.

btfss
bsf
btfsc
bef
Delay
bef
Delay
bsf
bef
Delay

return

STATUS, Z
DATA
STATUS, Z
DATA

21

CLOCK

45

CLOCK
STATUS, RPO
5

Result in "RECEIVE" register.

Returns OXFE in w if host aborts transmission.

Returns OxFF in w if framing/parity error detected. Returns 0x00 in w if byte received successfully.

>

; READ ONE BYTE: - TIMING IS CRITICAL!!!

>

Byteln

ByteInLoop

ByteInLoopl

btfss

goto
btfsc
goto

movlw

movwf

clrf
Delay
call
btfss
retlw
bef
rrf
iorwf
xorwf
decfsz
goto
Delay
call
btfss
retlw
xorwf
Delay
Delay
call
btfss

retlw

CLOCK
Byteln
DATA
Byteln
0x08
COUNTER
PARITY
28
Bitln
CLOCK
O0xFE
STATUS, C
RECEIVE, f
RECEIVE, f
PARITY,f
COUNTER, f
ByteInLoop
1
Bitln
CLOCK
O0xFE
PARITY, £
5
1
Bitln
CLOCK
O0xFE

Ape

H

61

;Wait for start bit

;Data bits
;Test for inhibit

;Parity bit
;Test for inhibit

;Stop bit
;Test for inhibit

3t 61 ut

~ ~

02-11-24 KA

PS/2 HiRZ %

#%: Adam Chapweske i¥: Roy Show

Bitln

xorlw
btfsc
clrf
btfsc
goto

bsf
bef
Delay
bef
Delay
bsf
Delay
bsf
bef

btfss

retlw

Delay

retlw

Delay
bsf
bef
Delay
bsf
bef
Delay
btfsc
retlw

retlw

0x00
STATUS, Z
PARITY
STATUS, Z
ByteInLoopl

STATUS, RPO
DATA

11

CLOCK

45

CLOCK

7

DATA
STATUS, RPO

PARITY, 7
OxFF

45
0x00

8
STATUS, RPO
CLOCK
45
CLOCK
STATUS, RPO
21
DATA
0x80
0x00

#

=

;Stop bit=1?

; No--keep clocking.

;Acknowledge

;Parity correct?

; No--return error

H
=N
o
b=

02-11-24 KA

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

MFEF PS2 EHLHBIFE

These routines can be used to interface a PS/2 mouse or keyboard.

IX SR TR0 PS/2 B br el B A A T 1,

PS2get:

This routine reads a byte from the PS/2 device (keyboard or mouse). Result in w.

PS2get call PS2getBit ;Get/ignore the start bit
movlw 0x08 ;Load Counter
movwf COUNTER

PS2getLoop bef STATUS, C
rrf TEMPO, f
call PS2getBit ;Read a data bit from the keyboard/mouse
iorwf TEMPO,
decfsz COUNTER, f ;Read 8 data bits yet?
goto PS2getLoop
call PS2getBit ;Get/ignore parity bit.
call PS2getBit ;Get/ignore stop bit
movf TEMPO, w ;Result in w.
return

PS2getBit btfss CLOCK ;Make sure clock is high.
goto $-1
btfsc CLOCK
goto $-1
goto $+1
btfss DATA :Read data.
retlw 0x00
retlw 0x80

PS2cmd:

This routine sends a byte in w to a PS/2 mouse or keyboard. TEMPO, TEMP1, and TEMP2 are general
purpose registers. CLOCK and DATA are assigned to port bits, and "Delay" is a self-explainatory macro.

DATA and CLOCK are held high by setting their I/O pin to input and allowing an external pullup resistor to

pull the line high. The lines are brought low by setting the I/O pin to output and writing a "0" to the pin.

PS2cmd:
movwf TEMPO
movlw 0x08
movwf TEMPI1
clrf TEMP2

;Store to-be-sent byte

;Initialize a counter

;Used for parity calc

63 jit 63 U1 02-11-24 KA

PS/2 HiRZ %

#%: Adam Chapweske i¥: Roy Show

bsf
bef
bef
bef

Delay

bsf
bef
bef
bef

Delay

bsf
bsf
bef
PS2cmdLoop:

movf

xorwf

call

rrf

decfsz

goto
comf

call

movlw

call

btfsc
goto
btfss
goto

return

PS2cmdBit:
btfsc

goto
bsf

andlw

btfss
bsf
btfsc
bef
bef
btfss
goto

return

STATUS, RPO
CLOCK
STATUS, RPO
CLOCK

100

STATUS, RPO
DATA
STATUS, RPO
DATA

5

STATUS, RPO
CLOCK
STATUS, RPO

TEMPO, w
TEMP2, f
PS2cmdBit
TEMPO, f
TEMPI, f
PS2cmdLoop
TEMP2, w
PS2cmdBit
0x01
PS2cmdBit
CLOCK
$-1
CLOCK
$-1

CLOCK

§-1
STATUS, RPO
0x01
STATUS, Z
DATA
STATUS, Z
DATA
STATUS, RPO
CLOCK

§-1

;Inhibit communication

;for at least 100 microseconds

;Pull DATA low

;Release CLOCK

;Parity calc
;Output 8§ data bits

;Output parity bit

;Output stop bit (1)
;Wait for acknowledge

;Wait for CLOCK=low

;Set/Reset DATA line

; Wait for CLOCK=high

&
N
=
=
H
(@)
=
=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show
Fis%7S PS/2 "Access' Mouse

This is a fully-functional PS/2 mouse written for the PIC16F84 microcontroller. It can be adapted to virtually
any inputs, which gives the user a lot of flexability in how he/she controls the computer. It was developed to
give computer access to people with physical disabilities, but I'm sure you can find many additional uses for
this project.

X —ME] PIC16F84 s il s (2 DO BER) PS/2 Blbw . ‘& SEhr Lol LUE SRR, Xifits THIE
R R PR AT T L THACE R A SRR A AATTREVS T SEHL, (HFRAAAE /R T IO IZAS T
FEFR B 250 1 3

Feel free to use the code for non-commercial purposes only. You may distribute the code only if it is
unmodified from its orginal form. I do not imply any warrenties or guarantees with this code. Use at
your own risk. Enjoy!

Click on the following links to get the files:

Access Mouse v1.50 - MPASM source code
Access Mouse v1.50 - Schematic diagram (jpg)
Access Mouse v1.51 - MPASM source code
Access Mouse v1.51 - Schematic diagram (jpg)

VERSION 1.51:

® All inputs are active low.

® Speed is controlled in software by adjusting "PERIOD" and "DISTANCE" constants.
® All inputs, including "Clock" and "Data" may be assigned to any I/O pin.

VERSION 1.50:

® Internal PORTB pullups are enabled and all inputs are active low.

All movement/button inputs may be assigned to any pin on PORTB.
Speed is controlled by adjusting a variable resistor.
An LED indicates the mouse's status.

Potientiometer and LED may be assigned to any pin on PORTA.

Just to give you an example of how these may be used, if you were to connect a condensor microphone
element to a 339 Quad Comparator, then connect the output of the comparator to the left mouse button input
pin on the PIC, you will be able to emulate a mouse click by blowing on the microphone.

If you find any bugs or have any comments, please send me an email. You may also email me your questions,
but I won't have time to respond to most of them. This is a work under progress. Check back every few
weeks for updated code and additions to this page.

For more information related to this project, try the following links:

The PS/2 Mouse Interface

PS/2 Mouse/Keyboard Protocol
PIC Code/Projects

Adam's Micro-Resources Home

b
N
W
=
P
N
W
=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

® More Links

Access Mouse 1.51 R 1 HL 5% 18] :

ACCESS MOUSE w1.51

Yoo
=
1-DATA
2-NIC
- Hz% i i 3 - GND
Yoo i} 4 - Yoo
RAZ DATA
MCLR 1 5% - CLOCK
[MCLR pag CLOCK £ - NIC
R1 REO g upP
L] Pl DOWN
RE2 [=———— RIGHT IC1 - PIC16F 54 Copyright
C1 RB3 [LEFT R1.R2R3-5K 2001,
5 RE4 = L.B. C1-20pF Adam
Gnd RES R.B. Chapweske
IC1
Access Mouse 1.51 MRITERAE: i icmbye v, iz, oo
; PS/2 Mouse Emulator by Adam Chapweske (chap0179@tc.umn.edu) vl.51

>

s

s

5

s

http://panda.cs.ndsu.nodak.edu/~achapwes/
This was written for the PIC16F84 with an RC oscillator @ 20pF/5kohm
(will work with any oscillator between 3.50 MHz - 5.76 MHz)

FEEL FREE TO USE THIS CODE FOR NON-COMMERCIAL PURPOSES ONLY. YOU MAY DISTRIBUTE
THIS CODE ONLY IF IT IS UNMODIFIED FROM ITS ORIGINAL FORM AND IT MUST CONTAIN THIS

HEADING. IDO NOT IMPLY ANY WARANTEES OR GUARANTEES. USE AT YOUR OWN RISK. ENJOY!!!

Copyright 2001, Adam Chapweske

CLOCK/TIMING INFORMATION:

PS/2 bus clock low time = 40 us +/- 25% (30 us - 50 us)

PS/2 bus clock high time = 40 us +/- 25% (30 us - 50 us)

RC osc @ 20pF/5k = 4.61 MHz +/- 25% (3.50 MHz - 5.76 MHz)

1 instruction cycle @ 4.61 MHz (RC) = 0.87 us +/- 25% (0.65 us - 1.09 us)

Optimum PS/2 bus clock low time @4.61MHz = 45.97 instruction cycles

Actual PS/2 bus clock low time = 46 instruction cycles

Actual PS/2 bus clock low time @4.61MHz (RC) = 40.0us +/- 25% (30us-50us)

Actual PS/2 bus clock frequency @461MHz (RC) = 12.5 kHz +/- 25% (10.0kHz-16.7kHz)

HEADER:

TITLE "PS/2 Mouse Emulator"
SUBTITLE "Copyright 2001, Adam Chapweske"

2 66 TUHL 66 U1 02-11-24 KA

PS2 RS #%: Adam Chapweske i¥: Roy Show
LIST P=16F84
INCLUDE "p16£f84.inc"
RADIX DEC
ERRORLEVEL -224,1
_ CONFIG _CP OFF & WDT OFF & XT OSC

: DEFINES:

#DEFINE DATA PORTA, 2 ;May be assigned to any I/O pin
#DEFINE CLOCK PORTA, 3 ;May be assigned to any I/O pin
#DEFINE PS2 Yp PORTB, 0 ;May be assigned to any 1/O pin
#DEFINE PS2 Yn PORTB, 1 ;May be assigned to any I/O pin
#DEFINE PS2 Xp PORTB, 2 ;May be assigned to any I/O pin
#DEFINE PS2 Xn PORTB, 3 ;May be assigned to any I/O pin
#DEFINE PS2 Bl PORTB, 4 ;May be assigned to any I/O pin
#DEFINE PS2 Br PORTB, 5 ;May be assigned to any I/O pin

#DEFINE PERIOD 20 ;Time between reading of inputs. Min=(osc frequency)/204800
#DEFINE DISTANCE 2 ;Amount by which X/Y counters are incremented/decremented
; RAM ALLOCATION:

cblock 0x0C

TEMPO, TEMP1

RECEIVE, PARITY, COUNTER ;Used in I/O routines

REPORT RATE, RESOLUTION ;Used for responses to status requests
FLAGS, XY_FLAGS

dBUTTONS ;"Delta Button States"

X_COUNTER

Y_COUNTER

endc

;FLAGS:

; bit 7 -- Always 0

; bit 6 -- Stream(0)/Remote(1) mode

; bit 5 -- Disable(0)/Enable(1) reporting
; bit 4 -- 1:1(0)/2:1(1) Scaling

; bit 3 -- Always 0

; bit 2 -- Always 0

; bit 1 -- Always 0

b
=N
J
=
P
=N
J
=

02-11-24 KA

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

; bit 0 -- Always 0

MODE equ 6
ENABLE equ 5
SCALE equ 4

;XY _FLAGS:

; bit 7 -- Y Counter overflow

; bit 6 -- X Counter overflow

; bit 5 -- Y counter sign bit

; bit 4 -- X counter sign bit

; bit 3 -- Always 1

; bit 2 -- Always 0 (middle button)
; bit 1 -- Previous right button state

; bit 0 -- Previous left button state

yOVF equ 7
xOVF equ 6
ySIGN equ 5
xSIGN equ 4
;dBUTTONS

; bit 7 -- Always 0
; bit 6 -- Always 0
; bit 5 -- Always 0
; bit 4 -- Always 0
; bit 3 -- Always 0
; bit 2 -- Always 0
; bit 1 -- Change in right buton state
; bit 0 -- Change in left button state

cblock ;Contains to-be-sent packet and last packet sent
LENGTH
SEND1
SEND2
SEND3

endc

; MACROS:

;Delay "Cycles" instruction cycles

b
o
)
=
P
o
%)
=

02-11-24 KA

PS/2 HiRZ %

#%: Adam Chapweske i¥: Roy Show

Delay macro Time
if (Time==1)
nop
exitm
endif
if (Time==2)
goto $+1
exitm
endif
if (Time==3)
nop
goto $+1
exitm
endif
if (Time==4)
goto $+1
goto $+1
exitm
endif
if (Time==5)
goto $+1
goto $+1
nop
exitm
endif
if (Time==6)
goto $+1
goto $+1
goto $+1
exitm
endif
if (Time==7)
goto $+1
goto $+1
goto $+1
nop
exitm
endif

if (Time%4==0)
movlw (Time-4)/4
call Delay us
exitm
endif
if (Time%4==1)
movlw (Time-5)/4

call Delay us

#

=
ps

=

02-11-24 KA

#%: Adam Chapweske i¥: Roy Show

PS/2 HiRS%
nop
exitm

endif

if (Time%4==2)
movlw (Time-6)/4
call Delay us
goto $+1
exitm
endif
if (Time%4==3)
movlw (Time-7)/4
call Delay us
goto $+1
nop
exitm
endif

endm

; ORG 0x000:

org 0x000
goto Start

; HANDLE COMMAND:

if (high Table1End 1= 0)

ERROR "Command handler table must be in low memory page"

endif

Command moviw 0x04 ;Test for a resolution value
subwf RECEIVE, w
bnc SetResolution
movlw 0xC8 ;Test for report rate value
subwf RECEIVE, w
bnc SetReportRate
movlw 0xE6 ;0xE6 is lowest code
subwf RECEIVE, w
bnc MainLoop

HandlerTable addwf PCL, f ;Add offset
goto Mouse E6 ;0xE6 - Set Scaling 1:1
goto Mouse E7 ;0xE7 - Set Scaling 2:1
goto MainLoop ;0xES8 - Set Resolution
goto Mouse E9 ;0xE9 - Status Request

70 T

02-11-24 KA

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

goto Mouse EA ;0xEA - Set Stream Mode

goto Report ;0xEB - Read Data

goto MainLoop ;0xEC - Reset Wrap Mode

goto MainLoop ;0xED -

goto WrapMode ;0xEE - Set Wrap Mode

goto MainLoop ;0xEF

goto Mouse FO ;0xFO - Set Remote Mode

goto MainLoop ;0xF1

goto Mouse F2 ;0xF2 - Read Device Type

goto MainLoop ;0xF3 - Set Report Rate

goto Mouse F4 ;0xF4 - Enable

goto Mouse F5 ;0xF5 - Disable

goto Mouse F6 ;0xF6 - Set Default

goto MainLoop ;0xF7

goto MainLoop ;0xF8

goto MainLoop ;0xF9

goto MainLoop ;0xFA

goto MainLoop ;0xFB

goto MainLoop ;0xFC

goto MainLoop ;0xFD

goto PacketOut ;0xFE - Resend
Tablel1End goto Reset ;0xFF - Reset

; START:

Start clrff PORTA
clrff PORTB
bsf STATUS, RPO ;(TRISA=TRISB=0xFF by default)
movlw 0x57 ;Timer mode, assign max. prescaler, enable pullups
movwf OPTION REG
bef STATUS, RPO
movlw 0x08 ;Bit 3 always = 1, clear previous button states
movwf XY FLAGS
; goto Reset

; Reset Mode:

Reset movlw 0xAA
movwf SENDI ;Load BAT completion code
call LoadDefaults
clef SEND2 ;Load Device ID (0x00)

moviw 0x02

71k 71 W

02-11-24 KA

PS2 RS #%: Adam Chapweske i¥:

Roy Show

movwf LENGTH
call BATdelay
goto PacketOut ;Output 2-byte "completion-code, device ID" packet

s

; Stream/Remote Mode:

MainLoop clrf X COUNTER ;Clear movement counters
clrf Y_COUNTER

MainLoopl btfss DATA ;Check for host request-to-send
goto Packetln
movlw PERIOD ;Report period
subwf TMRO, w
btfss STATUS, C ;TMRO=report period?
goto MainLoopl ; No--loop
clrf TMRO ; Yes--reset TMRO, then read inputs...
call ReadInputs
btfsc FLAGS, MODE ;Stream(0)/Remote(1) mode
goto MainLoopl
btfss FLAGS, ENABLE ;Disable(0)/Enable(1) reporting
goto MainLoopl
movf X COUNTER, w ;Test for X-movement
iorwf Y COUNTER, w ;Test for Y-movement
iorwf dBUTTONS, w ;Test for change in button states
bz MainLoopl
; goto Report

; REPORT:

Report movf dBUTTONS, w
xorwf XY FLAGS, f ;Find current button state
movf XY FLAGS, w
movwf SENDI
movf X COUNTER, w
movwf SEND2
movfY COUNTER, w
movwf SEND3
movlw 0x03 ;Movement data report length
movwf LENGTH
; goto PacketOut

; OUTPUT PACKET

b
~J
™)
=
P
~J
™)
=

02-11-24 KA

#%: Adam Chapweske i¥: Roy Show

PS/2 iK%

s

PacketOut movlw SEND1 ;First byte of packet
movwf FSR
movf LENGTH, w ;Length of packet
movwf TEMPI1

PacketOutLoop movfINDF, w ;Get data byte
call ByteOut ; Output that byte
xorlwOxFF ;Test for RTS error

bz Packetln

xorlwOxFE » OxFF ;Test for inhibit error
bz PacketOut

incf FSR, f ;Point to next byte
decfsz TEMPI,

goto PacketOutLoop

goto MainLoop

; READ PACKET

Packetln call Byteln
xorlwOxFF ;Test for parity/framing error
bz Mouse ERR
xorlwOxFE » OxFF ;Test for inhibit error
bz MainLoopl
movlw 0xFE ;Test for "Resend" command
xorwf RECEIVE, w
bz PacketOut
Acknowledge movlw OxFA ;Acknowledge
call ByteOut

goto Command

; READ INPUTS:

ReadInputs movlw DISTANCE

btfss PS2 Xp ;Read inputs
addwf X_COUNTER, f

btfss PS2_Yp

addwf Y_COUNTER, f

btfss PS2 Xn

subwf X COUNTER, f

btfss PS2_Yn

&
~J
W
=
Pz
~J
W

=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

subwf Y COUNTER, f

bef XY _FLAGS, xSIGN
btfsc X_COUNTER, 7
bsf XY FLAGS, xSIGN
bef XY _FLAGS, ySIGN
btfsc Y _COUNTER, 7
bsf XY FLAGS, ySIGN

movf XY FLAGS, w ;Get previous button states
andlw b'00000111"

btfss PS2 Bl ;Find changes in button states
xorlwb'00000001"
btfss PS2 Br
xorlwb'00000010'
movwf dBUTTONS ;Save *change* in button state
retlw 0x00

; WRAP MODE:

WrapMode btfsc DATA ;Wait for RTS
goto WrapMode
call Byteln ;Read one byte from host
xorlwOxFE ;Test for aborted transmission

bz WrapMode

movf RECEIVE, w

xorlwOxFF ;Test for "Reset" command

bz Acknowledge

xorlwOxFF*0xEC ;Test for "Reset Wrap Mode" command
bz Acknowledge

xorlwOxEC

call ByteOut ;Else, echo

goto WrapMode

; LOAD DEFAULT VALUES:

LoadDefaults movlw 100 ;Default report rate
movwf REPORT_RATE

movlw 0x02 ;Default resolution

movwf RESOLUTION

clrf FLAGS ;Stream mode, 1:1 scaling, disabled
retlw 0x00

5 74 TUHE 74 TT 02-11-24 KA

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

; EMULATE BAT:

BATdelay clrf TEMPO
clrff TEMP1
DelayLoop Delay 6
decfsz TEMPO,
goto DelayLoop
decfsz TEMPI,
goto DelayLoop

retlw 0x00

;Used for a 400 ms delay at power-on

; HANDLE COMMANDS:

movf RECEIVE, w
RESOLUTION

SetResolution
movw{

goto MainLoop

movf RECEIVE, w
REPORT RATE

SetReportRate
movwf

goto MainLoop

;0xE6 - Set Scaling 1:1
Mouse E6 bef FLAGS, SCALE
goto MainLoop

;0xE7 - Set Scaling 2:1
Mouse E7 bsf FLAGS, SCALE
goto MainLoop

;0xE9 - Status Request
Mouse E9 movf FLAGS, w
btfss PS2 Bl
iorlw 0x04
btfss PS2 Br
iorlw 0x01
movwf SENDI
movf RESOLUTION, w
movwf SEND2
movf REPORT _RATE, w
movwf SEND3
movlw 0x03

movw{ LENGTH

#

=
ps

=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

goto PacketOut

;0XEA - Set Stream Mode
Mouse EAbcf FLAGS, MODE
goto MainLoop

;0xFO - Set Remote Mode
Mouse FO bsf FLAGS, MODE
goto MainLoop

;0xF2 - Get Device ID
Mouse F2 clrf SENDI
movlw 0x01
movwf LENGTH
goto PacketOut

;0xF4 - Enable Reporting
Mouse F4 bsf FLAGS, ENABLE
goto MainLoop

;0xFS5 - Disable Reporting
Mouse F5 bef FLAGS, ENABLE
goto MainLoop

;0xF6 - Set Default
Mouse F6 call LoadDefaults
goto MainLoop

;JInvalid command

Mouse ERR movlw O0xFE
call ByteOut
goto MainLoop

; OUTPUT ONE BYTE: - TIMING IS CRITICAL!!!

ByteOut movwf TEMPO
InhibitLoop btfss CLOCK ;Test for inhibit
goto InhibitLoop
Delay 100 ;(50 microsec = 58 clock cycles, min)
btfss CLOCK
goto InhibitLoop
btfss DATA ;Check for request-to-send
retlw OxFF
clrf PARITY

b
~J
X
=
P
~J
X
=

02-11-24 KA

PS/2 HiRZ %

#%: Adam Chapweske i¥: Roy Show

ByteOutLoop

ByteOutEnd

BitOut

movlw 0x08
COUNTER
movlw 0x00

call BitOut

btfss CLOCK

movwf{

;Start bit (0)
;Test for inhibit
goto ByteOutEnd
Delay 4

movf TEMPO, w
PARITY, f
call BitOut

btfss CLOCK

xorwf
;Data bits

;Test for inhibit
goto ByteOutEnd

rrf TEMPO, £

decfsz COUNTER, f
goto ByteOutLoop
Delay 2

comf PARITY, w
call BitOut

btfss CLOCK

;Parity bit
;Test for inhibit
goto ByteOutEnd
Delay 5
movlw O0xFF
call BitOut
Delay 48
retlw 0x00

bsf STATUS, RPO
bsf DATA

bsf CLOCK

bef STATUS, RPO
retlw OxFE

;Stop bit (1)

bsf STATUS, RPO
andlw 0x01
btfss STATUS, Z
bsf DATA
btfsc STATUS, Z
bef DATA
Delay 21
bef CLOCK
Delay 45
bsf CLOCK
bef STATUS, RPO
Delay 5

return

#

=
ps

=

02-11-24 KA

PS2 RS #%: Adam Chapweske i¥: Roy Show
; READ ONE BYTE: (Takes about 1ms) - TIMING IS CRITICAL!!!

s

Byteln btfss CLOCK ;Test for Request-to-send
retlw OXFE
btfsc DATA
retlw OXFE
movlw 0x08
movwf COUNTER
clrf PARITY

Delay 28

ByteInLoop call Bitln ;Data bits
btfss CLOCK ;Test for inhibit
retlw OxFE

bef STATUS, C
rrf RECEIVE, f
iorwf RECEIVE, f
xorwf PARITY,f
decfsz COUNTER, f
goto ByteInLoop
Delay 1
call Bitln ;Parity bit
btfss CLOCK ;Test for inhibit
retlw OxFE
xorwf PARITY, f
Delay 5
ByteInLoopl Delay 1
call Bitln ;Stop bit
btfss CLOCK ;Test for inhibit
retlw OxFE
xorlw0x00
btfsc STATUS, Z
clrf PARITY
btfsc STATUS, Z ;Stop bit = 1?
goto BytelnLoopl ; No--keep clocking.

bsf STATUS, RPO ;Acknowledge
bef DATA

Delay 11

bef CLOCK

Delay 45

bsf CLOCK

Delay 7

bsf DATA

bef STATUS, RPO

&
-
®
=
H
-
®
=

02-11-24 KA

PS/2 iK%

#%: Adam Chapweske i¥: Roy Show

Bitln

btfss PARITY, 7 ;Parity correct?

retlw OxFF R

Delay 45
retlw 0x00

Delay 8

bsf STATUS, RPO
bef CLOCK
Delay 45

bsf CLOCK

bef STATUS, RPO
Delay 21

btfsc DATA

retlw 0x80

retlw 0x00

No--return error

5

DELAY:

s

;Delays 4w+4 cycles (including call,return, and movlw) (0=256)

Delay us addlw -1

btfss STATUS, Z
goto Delay us

return

end

;Precise delays used in /O

#

=
ps

=

02-11-24 KA

PS2 HiRZ% #%: Adam Chapweske i¥: Roy Show

By HAbRIF/Z%

S E R LB EERAE PDF AR AR Ry, BOOR T X, IRK S

The AT Keyboard - My page on AT keyboards
http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/keyboard/atkeyboard.html

The PS/2 Mouse - My page on the PS/2 mouse
http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/mouse/mouse.html

Keyboard Scan Codes - My collection of scan code sets, verified in hardware.

http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/keyboard/scancodes.html
PS/2 Mouse/Keyboard Protocol - Protocol used by AT and PS/2 keyboards.
http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/PS2/ps2.htm

Keyboard Code/Projects - My keyboard projects and source code.

http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/code/code.html

National Semiconductor - "Super I/O" chipset datasheets.

http://www.national.com/

IBM Archives - Non-technical historical information.
http://www-1.ibm.com/ibm/history/

Samtech, Holtech - Keyboard encoder datasheets.

http://www.samtech.com/

http://www.holtech.com/
Sci.Electronics.Repair - PC Keyboard FAQ.

http://www.repairfaq.org/

Holtek - Informative datasheets on many different PS/2 mice (and other peripherals).
http://www.holtek.com/products/computer/
EMC - More inormative datasheets on many different PS/2 mice (and an ADB mouse).

http://www.emc.com.tw/product/p_pc_mc.asp

Synaptics Touchpad Interfacing Guide -Very informative!
http://www.synaptics.com/decaf/utilities/tp-intf2-4. PDF
PS/2 Keyboard and Mouse Protocols - Timing diagrams.

http://www.networktechinc.com/ps2-prots.html
More links - Many more links to related information.
http://www-dev.ri.cmu.edu:8080/pub_files/publ/brennemann_a e 1995 2/brennemann_a e 1995 2.pdf

Adam Chapweske's Homepage - Information about me.

http://panda.cs.ndsu.nodak.edu/~achapwes/
More Links - Many more links to related resources.
http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/Links.html
Email me - Questions/comments?
mailto:achapwes@panda.cs.ndsu.nodak.edu

B IR shouxj@sohu.com B{# 2= c51bbs.com kI IE .

b
o0
S
=
P
o0
S
=

02-11-24 KA

